

Water Framework Directive (WFD) River Basin District Management Systems

METHODOLOGY FOR RISK CHARACTERISATION OF IRELAND'S GROUNDWATER

Paper by the Working Group on Groundwater

Guidance document no. GW8

This is a guidance paper on the application of a Risk Characterisation Methodology. It documents the principles to be adopted
by River Basin Districts and authorities responsible for implementing the Water Framework Directive in Ireland.
REVISION CONTROL TABLE

	REVISION CONTROL TABLE							
Status Approved by National Technical WFD Relevant EU Reporting Sheets								
	Co-ordination Group	Requirement						
Final	March 2005	Characterisation	GWPI 1, 2, 3, 4, 5, 6, 7 & 8	December 2004				

Contents

1.		
2.	ENVIRONMENTAL CHARACTERISATION AND RISK CHARACTERISATION	1
2.	1 ROLE OF THE RISK CONCEPT	1
2.	2 PHYSICAL CHARACTERISATION	3
2.	3 RISK CHARACTERISATION	3
3.	RISK ASSESSMENT	7
3.	1 RISK CATEGORIES	7
3.	2 RISK ASSESSMENT SHEETS	8
4.	GROUNDWATER RISK ASSESSMENT GWRA1	9
5.	GROUND WATER RISK ASSESSMENT GWRA2	11
6.	GROUNDWATER RISK ASSESSMENT GWRA3	13
7.	GROUNDWATER RISK ASSESSMENT GWRA4	15
8.	GROUNDWATER RISK ASSESSMENT GWRA5	17
9.	GROUNDWATER RISK ASSESSMENT GWRA6	19
10.	GROUNDWATER RISK ASSESSMENT GWRA7	21
11.	GROUNDWATER RISK ASSESSMENT GWRA8	23
12.	GROUNDWATER RISK ASSESSMENT GWRA9	25
13.	GROUNDWATER RISK ASSESSMENT GWRA10	27
14.	GROUNDWATER RISK ASSESSMENT GWRA11	29
15.	GROUNDWATER RISK ASSESSMENT GWRA12	30
16.	GROUNDWATER RISK ASSESSMENT SWRA1	31
17.	GROUNDWATER RISK ASSESSMENT SWRA2	
18.	GROUNDWATER RISK ASSESSMENT SWRA3	35
19.	GROUNDWATER RISK ASSESSMENT SWRA4	
20.	GROUNDWATER RISK ASSESSMENT SWRA5	
21.	GROUNDWATER RISK ASSESSMENT SWRA6	
22.	GROUNDWATER RISK ASSESSMENT GWDTERA1	
23.	GROUNDWATER RISK ASSESSMENT GWDTERA2A	
24.	GROUNDWATER RISK ASSESSMENT GWDTERA2B	
25.	GROUNDWATER RISK ASSESSMENT GWDTERA3	
26.	GROUND WATER RISK ASSESSMENT GWDTERA4	
27.	GROUND WATER RISK ASSESSMENT GWDTERA5	
28.	GROUND WATER RISK ASSESSMENT GWDTERA6	
29.	GROUND WATER RISK ASSESSMENT GWDTERA7	
30.	GROUND WATER RISK ASSESSMENT GWDTERA8	
31.	GROUND WATER RISK ASSESSMENT GWDTERA9	
32.	GROUNDWATER RISK ASSESSMENT DWPARA1	
33.	GROUNDWATER RISK ASSESSMENT DWPARA2	
34.	MEMBERSHIP OF GROUNDWATER WORKING GROUP	
35.	REFERENCES	68

Tables

TABLE 1 TABLE 2 TABLE 3 TABLE 4	LAYERS OF GEOSCIENTIFIC INFORMATION USED IN IMPLEMENTING THE WFD EXAMPLES OF RELEVANT CHARACTERISTICS OF THE PATHWAY AND THEIR IMPLICATION IN THE RISK ASSESSMENT REPORTING CATEGORIES	ON 6		
Pressures				
	Figures			
	SUMMARY OF WFD RISK ASSESSMENT APPROACH (ADAPTED FROM WFD GUIDANCE IMENT GW4, GWWG, 2004.)	1		
	DIAGRAMMATIC ILLUSTRATION OF A GROUNDWATER BODY SHOWING THE RANGE OF	1		
RECEI	PTORS THAT MUST BE CONSIDERED (ADAPTED FROM NERC, 1998)	2		
	PRESSURE – PATHWAY-RECEPTOR MODEL FOR IMPLEMENTATION OF THE WFD			

Methodology for Risk Characterisation of Ireland's Groundwater

1. Purpose of this paper

The paper sets out the detailed methodology and criteria for undertaking the risk characterisation of groundwater in Ireland.

The principles on which the methodology is based are given in Guidance Document GW4 'Pressures and Impacts Assessment Methodology' (GW WG, 2003). The approach used in undertaking the risk assessment is heavily influenced by the SEPA methodology (SEPA Groundwater Task Group, 2004).

2. Environmental Characterisation and Risk Characterisation

2.1 Role of the Risk Concept

Risk assessment is at the heart of effective river basin planning (SEPA, 2002) and therefore of the WFD. In implementing the WFD, risk assessment allows environmental problems to be identified, monitoring programmes to be designed, and appropriate, cost effective protection and improvement measures to be formulated and implemented. The basic unit of risk assessment is the 'groundwater body', which is defined in the Directive as 'a distinct volume of groundwater within an aquifer or aquifers'. The output of the risk assessment is a list of water bodies, including groundwater bodies, considered to be 'at risk' of failing to meet the environmental objectives of the Directive. The risk assessment approach is summarised in Figure 1.

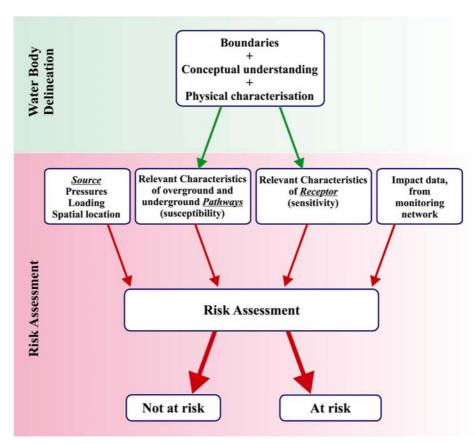


Figure 1: Summary of WFD risk assessment approach (adapted from WFD Guidance Document GW4, GWWG, 2004.)

The risk assessment approach is broad, in that:

- the receptors that must be considered are not just groundwater and drinking water abstraction points, but also groundwater dependent river and lakes and groundwater dependent terrestrial ecosystems (see Figure 2);
- the geological pathway includes, potentially, both vertical and horizontal components to the receptors (see Figure 3).

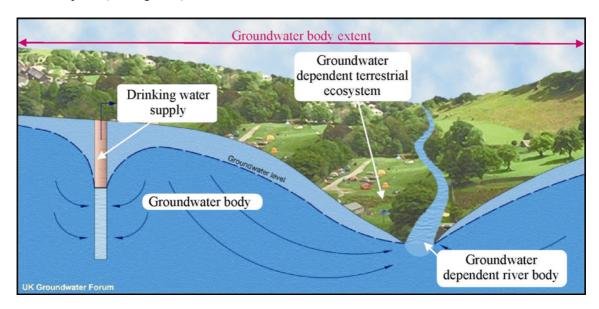


Figure 2: Diagrammatic illustration of a groundwater body showing the range of receptors that must be considered (adapted from NERC, 1998)

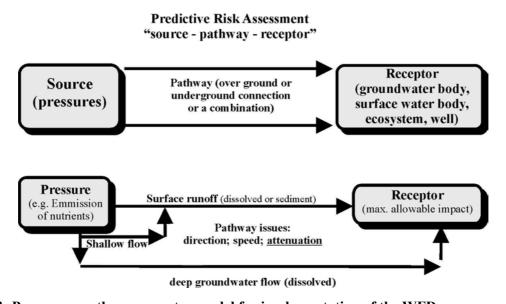


Figure 3: Pressure – pathway-receptor model for implementation of the WFD

The groundwater characterisation process for each RBD involves two elements (SEPA, 2004):

- 1. Physical characterisation.
- 2. Risk characterisation.

2.2 Physical Characterisation

Physical characterisation is a key first step in the risk assessment process. It provides relevant information on groundwater receptors and on the geological pathways that link pressures and receptors.

For each groundwater body in the country (~650), relevant layers of geological and hydrogeological information have been produced. These are summarised in Table 1.

Virtually for the first time in the Republic of Ireland, it is possible to characterise, at both a regional and local scale, all of the country in a way that enables water flow, particularly groundwater flow, and contaminant movement to be understood and described. Conceptual models, providing a relatively simple 3-D understanding of water flow, are now available for all of the land surface.

Physical characterisation enables one of the important elements of risk characterisation – pathway susceptibility – for pollutants to be determined. In undertaking the risk assessment, taking account of the pathway is required to enable:

- provision of the link between pressures and receptors;
- prediction of the likelihood of impact, where monitoring is inadequate;
- a description and understanding of 'why' there could be/has been an impact;
- monitoring data to be assessed;
- monitoring networks to be designed; and
- responses to the risk and appropriate measures to be implemented.

'Pathway susceptibility' is a measure of the degree of attenuation between source and receptor. It is a measure of the ability of the pathway to reduce the impact of a pressure, in terms of time to reach the receptor, pollutant load reaching the receptor, pollutant concentration level in the receptor and duration of the pollution event. Examples of the use and relevance of various pathway layers are given in Table 2.

2.3 Risk Characterisation

Risk characterisation integrates pressures and impacts with the physical characterisation, using the pressure-pathway-receptor approach, to derive an assessment of risk.

Following physical characterisation, the relevant factors involved in the risk assessment and the process followed are outlined below.

Source (pressure magnitude) Factors

- Identification of pressures.
- Estimation of pollutant loading (quantity and concentration) for main pollutant types (e.g. mobile inorganic (NO₃) and less mobile inorganic (PO₄) constituents).
- Development of threshold values for particular pressure magnitudes and pollutant types, in the form of matrices (e.g. more than a certain number of livestock units/ha could be categorised as a high pressure magnitude for both NO₃ and PO₄).
- For certain pollutants (e.g. trace organics), presence or absence is the determining factor.

Pathway (both over ground and underground) Factors

- Compilation and characterisation of relevant elements, such as soils, subsoils, aquifers, vulnerability.
- Classification of pathway information as 'pathway susceptibility' for the main pollutant types (e.g. the pathway susceptibility for NO₃ and PO₄ will differ) into 4 groups, varying from 'extremely high' to 'low'.

Receptor Factors

• Evaluation of the sensitivity of different receptors to pressures (pollutants and/or abstraction) and categorisation into high and moderate sensitivity, e.g. fens are more sensitive than raised bogs to groundwater abstraction but are less sensitive to nutrients.

Integrating Source, Pathway and Receptor Factors

• This integration enables the predicted Risk Assessment category to be determined.

Impact Data

Where adequate representative impact data are available, the predicted risk category can be adjusted. However, data cannot be used to adjust the category downwards (i.e. to a lower risk category).

The general process is illustrated by the matrices below.

A. Pathway susceptibility

PATHWAY			Flow Regime (Horizontal pathway)					
	SUSCE	PTIBILITY	Karst	Fissured	Intergranular	Poorly productive		
			aquifers	aquifers	aquifers	aquifers		
*	& Sil	'Wet' soil						
*	Soil & subsoil	Subsoil						
wa	Sn	permeability				<u> </u>		
pathway***	ity	Extreme		Extreme, High	n, Moderate or Lo	ow		
	bili	High						
ica	era	Moderate						
Vertical	Vulnerability	Low						
Λ	١٨	High to Low**						

B. Impact potential

IMPACT	Pat			
POTENTIAL 🔪	Extreme	High	Moderate	Low
e. e				
ita ita	11: 1	M l d I	NT 11 11 1	1
lgn lgn	High	, Moderate, Low o	or Negligible	
m P P				<u> </u>

C. Risk category based on predictive risk assessment

RISK CA	ATEGORY	Proportion of assessment area with high and moderate impact potential					
		>40%	25-40%	15-25%	10-15%	5-10%	<5%
Receptor	High		1a 1h	20 or 2h (se	a Tabla 3)		
Sensitivity	Moderate	1a, 1b, 2a or 2b (see Table 3)					

D. Risk category of groundwater body adjusted using available impact data

Predictive risk	Adjustments made using available groundwater impact data				
category	Data criteria Adjusted risk category				
1a, 1b, 2a or 2b	Usually these are threshold values	1a or 1b, depending on level of confidence in the monitoring data. 2a or 2b			

Table 1 Layers of geoscientific information used in implementing the WFD

Map	Description	Organisation
Soils	A new digital map, which will be available for the whole country in late 2005, is being produced, which maps soils on the basis of whether they are mineral or organic, well drained or poorly drained and acidic or basic.	Spatial Analysis Group, Teagasc, as part of a DEHLG funded project, managed by the EPA.
Subsoils	A new digital map, which will be available for the country in mid 2005, is being produced, which is showing all the main subsoil types – sands/gravels, till, alluvium, lacustrine deposits, marine deposits and peat. GSI Quaternary geology maps, where available, are used as part of the mapping process.	Teagasc, as part of a DEHLG funded project, managed by the EPA.
Bedrock	The ~1140 formations and members in the detailed GSI country-wide digital bedrock map have been grouped into 28 rock units, based on similarities in hydrogeological properties. This map is now available on the GSI website.	GSI
Outcrop and depth to bedrock	All outcrops on the GSI 6 inch sheets have been digitised by the GSI together with more recent information. Subsequently, Teagasc have rectified and improved this map using digital photogrammetry techniques. All depth to bedrock readily available in GSI and in consultancies have been compiled by GSI and included in a digital database.	GSI and Teagasc
Subsoil permeability	Three subsoil permeability categories (high, moderate, low) have been mapped in 10 counties.	GSI
Vulnerability	Vulnerability maps produced by GSI are available for ~52% of the country; 'extremely' vulnerable areas are being delineated for the remainder of the country by RBD consultants.	GSI and RBD consultants
Aquifer	A draft national aquifer map has been completed and is now available on the GSI website. A report has been drafted, which will be finalised in early 2005.	GSI
Groundwater flow regime	The aquifer categories have been grouped into four flow regimes – karstic, fissured, poorly productive and granular – to aid surface water and groundwater characterisation.	GSI
Groundwater bodies (GWBs)	The boundaries of the ~410 GWBs have been delineated. Reports (3-6 pages) have been completed for each GWB using the following headings: Topography; Geology and Aquifers; Overlying Strata; Recharge; Discharge; Groundwater Flow Paths; Groundwater and Surface Water Interactions; Conceptual Model; Information Sources.	GSI (Acknowledgement: funding was provided to GSI by the DEHLG through the RBD projects)

Examples of relevant characteristics of the pathway and their implication Table 2

Pathway layer	Relevant factor	Relevant characteristic	Implication	Receptor at risk
Soil	'wet' (gley)	Low permeability	Rapid runoff (sheet flow)	SW (via surface runoff)
	'dry' (e.g. Brown Earth)	Moderate/high permeability	Leaching of pollutants, e.g. NO ₃ and P	GW & SW (via gw)
	acid/basic 'organic'	Acid buffering capacity	Poor buffering of acidic inputs	SW
	organic	Low permeability and high CEC	Acidic, high runoff and attenuation	SW
Subsoil	Sand/gravel	High permeability	Leaching of pollutants, e.g. NO ₃	GW and SW (via gw)
	clayey subsoil	Low permeability	Rapid runoff	SW (via surface runoff)
	Depth to bedrock	Bedrock at or near (<1 m) surface	a) Minimal protection of gw b) No acceptance of rainfall in low transmissivity rock areas, with rapid runoff	a) GW and SW (via gw) b) SW
		>3 m low permeability subsoil	Rapid runoff; gw protected	
Bedrock	Type of bedrock	Calcareous or siliceous	Influence on typology of rivers and lakes and buffering capacity	SW
Groundwater Vulnerability	'Extreme' and 'high'	High transit time	High leaching potential	GW and SW (via gw)
	'Low'	Low transit time and recharge; high attenuation	Minimal leaching potential & rapid runoff	SW
Aquifer flow regime	Pu, Pl and Ll	Low transmissivity; short underground flowpaths	High surface drainage	SW
	Rk, Rf, Lm	High/moderate transmissivity; long underground flowpaths	Low surface drainage; GW can act as pathway to SW GW an imp. resource	GW and SW (via gw)
	Karst aquifers (Rk)	High velocities; point	Pollutants can reach receptor quickly	GW and SW (via gw)
	Sand/gravel aquifers (Rg and Lg)	recharge, minimal attenuation High transmissivities	Mobility of nitrate (but not phosphate.)	GW and SW (via gw)
Karstification	Point recharge	Presence of swallow holes	No retardation of contaminants	GW & SW (via gw)
Climate	Rainfall Evapo- transpiration	Recharge	Quantitative status Baseflow in rivers Dilution	GW SW
Topography	Slope	Gradient	Rate of runoff	SW

GW = groundwater; SW = surface water (Table from Guidance Document GW4, GWWG, 2004)

3. Risk Assessment

3.1 Risk Categories

The impact of human activities is described in terms of risk assessment for each water body as to whether it will achieve the required ecological status by 2015 or not. The assessment undertaken results in all water bodies being placed into one of three risk categories defined under by the European Commission's Reporting Sheets as follows:

- Water bodies for which it is already clear without the need for further characterisation or additional monitoring data, that the objectives will be failed;
- Water bodies for which it is possible that the objectives of the Directive will be failed but, because of inadequate data, further characterisation and operational monitoring are considered necessary to be sufficiently confident that this is the case;
- Water bodies for which it is already clear, without the need for further characterisation or additional monitoring data, that the achievement of the objectives are not at risk.

In Ireland, these three Categories have been further refined to four risk categories for the purpose of focusing actions during the next phase (2005-2008). These risk categories, designated as **2b**, **2a**, **1b** and **1a**, and their relationship to the WFD reporting categories are shown in Table 3.

 Table 3
 Irish Risk Assessment Reporting Categories

WFD Risk Category	European Commission Reporting Sheet Risk Categories (Dec. 2004)	Irish Reporting Risk Categories
Water bodies at risk of failing to achieve an environmental objective Water bodies not at risk of failing to achieve an environmental objective	Water bodies for which it is already clear without the need for further characterisation or additional monitoring data, that the objectives will be failed Water bodies where, due to insufficient data, further characterisation and operational monitoring are necessary for a clear assessment of to be made	(1a) Water bodies at significant risk Action: Identifies water bodies for which consideration of appropriate measures to improve status can start as soon as practical (1b) Water bodies probably at significant risk but for which further information will be needed to confirm that this view is correct Action: Focus for more detailed risk assessments (including, where necessary, further characterisation) aimed at determining whether or not the water bodies in this category are at significant risk in time for the publication of the interim overview of significant water management issues in 2007 (2a) Water bodies probably not at significant risk on the basis of available information for which confidence in the available information being comprehensive and reliable is lower Action: Focus for more detailed risk assessments aimed at determining whether or not the water bodies in this category are not at significant risk in time for the publication of the draft River Basin Management Plan due to be completed in 2008
	Water bodies for which it is already clear, without the need for further characterisation or additional monitoring data, that the achievement of the objectives are not at risk	(2b) Water bodies not at significant risk on the basis of available information for which confidence in the available information being comprehensive and reliable is high Action: Identifies water bodies for which consideration of appropriate measures to ensure no deterioration in status can start as soon as practical

3.2 Risk Assessment Sheets

The risk assessment methodology is based on considering four receptors – groundwater bodies, groundwater dependent rivers and lakes, groundwater dependent terrestrial ecosystems and drinking water abstraction points. The environmental objectives, pathway susceptibility and sensitivity of the receptors frequently vary. Therefore, for each of these receptors, the impact of three pressure types – groundwater abstraction, diffuse source pollutants and point source pollutants – is considered separately. Risk assessment sheets have been prepared for each scenario listed in Table 4, and they are given in the following Sections.

Table 4WFD Groundwater Risk Assessment Sheets for Relevant Receptors and Pressures

Receptor:	Groundwater Body	Groundwater dependent rivers, lakes & estuaries	Groundwater Dependent Terrestrial Ecosystems	Abstraction points
WFD Objective:	Status, trends	Status	Status	Drinking water protected areas
Groundwater Abstraction				
Water balance	GWRA1	SWRA1	GWDTERA1	-
Intrusion	GWRA2	-	-	-
Diffuse Source Pollutants				
Mobile nutrients (e.g. NO ₃)	GWRA3	SWRA2		DWPARA1
Less mobile nutrients (e.g. PO ₄)	-	SWRA3	GWDTERA2a GWDTERA2b	-
Mobile chemicals	GWRA4	SWRA4		DWPARA2
Clustered on-site systems & leaking urban sewerage systems	GWRA5	SWRA5	GWDTERA3	
Sheep dip	D	D	D	D
Less mobile chemicals	-	-	-	-
Microbial organisms	-	-	-	D
Point Source Pollutants				
Mining	GWRA6	SWRA6	GWDTERA4	
Quarries	GWRA7		GWDTERA5	
Landfills	GWRA8		GWDTERA6	
Oil industry infrastructure	GWRA9		GWDTERA7	
Contaminated land	GWRA10		GWDTERA8	
Trade effluent discharges	GWRA11			
Urban wastewater discharges	GWRA12		GWDTERA9	

Notes:

- 1. Each number represents a separate risk assessment sheet.
- 2. Where same heavy border colour is used, it indicates that the risk assessment matrices are identical.
- 3. "D": assessment planned but deferred until data become available.
- 4. "-": No assessment planned.

Summary details on pressures, receptors and WFD objective

RA Sheet	GWRA1
Receptor type	Groundwater body
Pressure type	Abstraction
WFD objective	Quantitative status
Assessment area	Surface extent of the groundwater body

Note: Further information and explanation is given in Guidance Document GW5 "Guidance on the Assessment of the Impact of Groundwater Abstractions" (GW WG, 2004).

A. Recharge Estimation

a) Effective Rainfall Estimation

Obtained from recently produced Meteorological Service maps.

b) Recharge Coefficient

- The Recharge coefficient is the proportion of Effective Rainfall that may become Recharge.
- It should be determined by using Table 1 (below).

c) Applying a Recharge Cap on Poorly productive Aquifers

- A recharge cap is applied to poorly productive aquifers, as they are not capable of accepting the available recharge due to their low transmissivity.
- The recharge cap for Locally Important aquifers, which are moderately productive only in local zones (LI) is 200mm/yr, whereas the cap for Poor Aquifers (Pl & Pu) is 100mm/yr.

B. Impact potential

		Aquifer Type			
IM	PACT POTENTIAL	Bedrock	Sand/gravel		
e %	>30%	High	High		
BS as a average charge	20 to 30%	High	Moderate		
e L	10 to 20%	Moderate	Low		
GW o	2 to 10%	Low	Low		
	<2%	Negligible	Negligible		

C. Risk category based on predictive risk assessment and available impact data

Potential Impact	Evidence for GW level decline	No/ insufficient evidence for GW level decline	Evidence of no GW decline
High	At Significant Risk (1a)	Probably at risk (1b)	Not at significant risk (low confidence) (2a) to Not at significant risk (2b) based on confidence in the data
Moderate	At Significant Risk (1a)	Not at significant risk (low confidence) (2a)	Not at significant risk (2b)
Low	At Significant Risk (1a) to Probably at risk (1b) based on confidence in the data	Not at significant risk (low confidence) (2a)	Not at significant risk (2b)

Table 1 Recharge coefficients for different hydrogeological settings

Vulnerabi	lity	Hydrogeological setting	Recharge coefficient (rc)			
category			Min (%)	Inner Range	Max (%)	
Extreme	1.i	Areas where rock is at ground surface		80-90	100	
	1.ii	Sand/gravel overlain by 'well drained' soil	60	80-90	100	
		Sand/gravel overlain by 'poorly drained' (gley) soil				
	1.iii	Till overlain by 'well drained' soil	45	50-70	80	
	1.iv	Till overlain by 'poorly drained' (gley) soil	15	25-40	50	
	1.v	Sand/ gravel aquifer where the water table is ≤ 3 m below surface	70	80-90	100	
	1.vi	Peat	15	25-40	50	
High	2.i	Sand/gravel aquifer, overlain by 'well drained' soil	60	80-90	100	
	2.ii	High permeability subsoil (sand/gravel) overlain by 'well drained' soil	60	80-90	100	
	2.iii	High permeability subsoil (sand/gravel) overlain by 'poorly drained' soil				
	2.iv	Moderate permeability subsoil overlain by 'well drained' soil	35	50-70	80	
	2.v	Moderate permeability subsoil overlain by 'poorly drained' (gley) soil	15	25-40	50	
	2.vi	Low permeability subsoil	10	23-30	40	
	2.vii	Peat	0	5-15	20	
Moderate	3.i	Moderate permeability subsoil and overlain by 'well drained' soil	25	30-40	60	
	3.ii	Moderate permeability subsoil and overlain by 'poorly drained' (gley) soil	10	20-40	50	
	3.iii	Low permeability subsoil	5	10-20	30	
	3. iv	Basin peat	0	3-5	10	
Low	4.i	Low permeability subsoil	2	5-15	20	
	4.ii	Basin peat	0	3-5	10	
High to	5.i	High Permeability Subsoils (Sand & Gravels)	60	90	100	
Low	5.ii	Moderate Permeability Subsoil overlain by well drained soils	25	60	80	
	5.iii	Moderate Permeability Subsoils overlain by poorly drained soils	10	30	50	
	5.iv	Low Permeability Subsoil	2	20	40	
	5.v	Peat	0	5	20	

Summary details on pressures, receptors and WFD objective

RA Sheet	GWRA2
Receptor type	Groundwater body
Pressure type	Saline Intrusion
WFD objective	Chemical & quantitative status
Assessment area	Surface extent of the ground water body

This risk assessment only applies to those ground water bodies that are adjacent to transitional or coastal waters.

A. Pathway susceptibility

The pathway susceptibility depends on:

- Distance from saline water a maximum distance of 5km from the transitional/coastal waters is sufficient for this risk assessment process;
- Groundwater flow regime, as indicated by aquifer type.
- The vertical pathway (as defined by vulnerability) is not relevant, unless the aquifer is confined.

Table A

PATHWAY		Flow Regime				
SUSCEPTIBILITY		Karst	Fissured	Intergranular	Poorly productive	
		aquifers	aquifers	aquifers	aquifers	
Distance	<100 m	Е	E	Н	M	
from saline	100-1000 m	Н	Н	M	L	
water	1000-3000 m	M	M	L	L	

B. Impact potential

Pressure magnitude is a function of the quantity of groundwater abstracted.

Table B

		Pathway Susceptibility (from Table A)					
IMP	ACT POTENTIAL	Extreme	High	Moderate	Low		
0)	$>5000 \text{ m}^3/\text{d}$	High	High	High	Moderate		
sure itude	1000-5000 m ³ /d	High	Moderate	Moderate	Moderate		
Pressure nagnitud	100-1000 m ³ /d	Moderate	Low	Low	Low		
d m	$<100 \text{ m}^3/\text{d}$	Low	Low	Negligible	Negligible		

C. Risk category based on predictive and impact risk assessments

Assessments made on the basis of predictions from pressure-susceptibility analysis		Adjustments to risk assessment category based on available impact data		
Impact potential (from Table B)	Risk category for whole groundwater body	Data type*	Adjusted risk assessment category	
High	16	Average EC in excess of 1000 µS/cm at monitoring points within 2 km of coast where levels are not thought to be naturally derived	1a	
Moderate	2a	Average EC in excess of 1000 µS/cm at monitoring points within 2 km of coast where levels are not thought to be naturally derived	1b	
Low	2a			
Negligible	2b			

^{*}Based largely on SEPA RA sheet.

Note: If sensitive receptors, such as GWDTEs, are present in an area of high, moderate and low impact potential, this risk assessment should be compared with the results of RA sheet GWDTERA1, to ensure that the risk assessment is sufficiently comprehensive.

D. Delineating Groundwater Bodies 'At Risk' from Point Saline Intrusion

In most GWBs, saline intrusion will affect only a small proportion of the GWB. In order to focus monitoring and further characterisation on relevant areas, it is recommended that where saline intrusion is considered to be putting a groundwater body 'at risk' (categories 1a or 1b) and the impacted area is <50% of the GWB, subdivision should normally be undertaken. The boundaries must be based on the conceptual understanding of the area and on hydrogeological boundaries to flow. For instance, the surface water catchment may be used where it equates closely to the impacted catchment area. Alternatively, groundwater flow lines (estimated, in most instances) may be used.

Summary details on pressures, receptors and WFD objective

RA Sheet	GWRA3
Receptor type	Groundwater body
Pressure type	Diffuse – mobile inorganics (NO ₃)
WFD objective	Chemical status
Assessment area	Surface extent of the groundwater body

A. Pathway susceptibility

	PA	THWAY		Flow Regime (Horizontal pathway)				
	SUSCE	EPTIBILITY	Karst Fissured Intergranular Poorly productive aquifers aquifers aquifers aquifers					
ıbsoil		'Wet' soil	L	L	L	L		
***/	Soil & subsoil	Low permeability subsoil	L	L	L	L		
Vertical pathway*** Vulnerability Soil	lity	Extreme	Е	Е	Н	M*		
		High	Н	Н	Н	M*		
	nerabi	Moderate	M	M	M	L*		
	Vul	Low	L	L	L	L		
		High to Low**	Н	Н	Н	M		

^{*} In poorly productive aquifers where denitrification is not considered likely to occur, these categories should be the same as the karst and fissured aquifers categories.

B. Impact potential

		Pathway Susceptibility (from Table A)					
IMP	ACT POTENTIAL*	Extreme	High	Moderate	Low		
e	>2.0 LU ha ⁻¹	High	High	Moderate	Low		
pnq	or >33% tillage						
magnitude	1.5 - 2.0 LU ha ⁻¹ or	Moderate	Moderate	Low	Low		
nag	18-33% tillage						
	1.0-1.5 LU ha ⁻¹ or	Low	Low	Low	Low		
ms	3-18% tillage						
Pressure	<1.0 LU ha ⁻¹ or	Negligible	Negligible	Negligible	Negligible		
Ь	<3% tillage	- -					

^{*}Deriving Impact Potential

Individual Impact Potential maps are derived for the three types of pressures: cattle/sheep, pigs/poultry and tillage i.e. each grid cell within the maps will have three Impact Potential categories.

The *highest* Impact Potential category is taken for each cell, regardless of the type of pressure.

Within each GWB, the total area of 'H' plus 'M' Impact Potential is used to determine whether the GWB is 'at risk' (see C below).

^{**} For areas where complete vulnerability map is not available from GSI.

^{***} The 'wet' soil and low permeability subsoil layers take precedence over the vulnerability layers.

C. Risk category based on predictive risk assessment

RISK CATEGORY		Proportion of assessment area with high and moderate impact potential					
		>40%**	25-40%	15-25%	10-15%	5-10%	<5%
Receptor Sensitivity	High sensitivity* (nitrate-limited ecosystems)	n/a	n/a	n/a	n/a	n/a	n/a
Re	Moderate	1b	2a	2a	2a	2b	2b

Risk category of groundwater body adjusted using available impact data D.

Predictive risk	Adjustments made using available groundwater impact data					
category	Data criteria	Adjusted risk category				
All categories	Available representative monitoring data	1a				
	show an environmentally significant upward					
	trend in groundwater nitrate concentrations					
1b	Weighted mean NO ₃ -N >11.3 mg l ⁻¹	1a or 1b,				
		depending on level of				
		confidence in the				
		monitoring data				
2a		1b or 2a,				
	Weighted mean NO ₃ -N 8.5-11.3 mg l ⁻¹	depending on level of				
		confidence in the				
2b		monitoring data				
2b	Weighted mean NO ₃ -N 5.65-8.5 mg l ⁻¹	2a				
	Weighted mean NO ₃ -N <5.6 mg l ⁻¹	2b				

^{*} Not applicable – see RA sheet SWRA2.

**The basis for this threshold is given in guidance document no. GW10 (GW WG, 2004).

Summary details on pressures, receptors and WFD objective

RA Sheet	GWRA4
Receptor type	Groundwater body
Pressure type	Diffuse – mobile organics (pesticides and PAHs)
WFD objective	Chemical status
Assessment area	Surface extent of the groundwater body

A. Pathway susceptibility

	PA	THWAY		Flow Regime (Ho	rizontal pathway	y)
	SUSCEPTIBILITY		Karst aquifers	Fissured aquifers	Intergranular aquifers	Poorly productive aquifers
	Sub- soil	Low permeability subsoil*	L	L	L	L
/ay		Extreme	Е	Е	Н	Е
Vertical pathway	lity	High	Н	Н	Н	Н
ertical	Vulnerability	Moderate	M	M	M	L
Λ	Vulr	Low	L	L	L	L
		High to low**	Н	Н	Н	M

^{*} In areas where GSI subsoil permeability map is unavailable, use vulnerability map alone.

B. Impact potential

		Pati	hway Susceptibili	ty (from Table A)	
IMPACT POTENTIAL		Extreme	High	Moderate	Low
sure	Present	High	Moderate	Low	Negligible
Pressure magnitud	Absent	Negligible	Negligible	Negligible	Negligible

^{*} Pressure magnitude

C. Risk category based on predictive risk assessment

RISK CATEGORY		Proportion	of assessme	nt area with potentia	O	noderate i	mpact
		>50%	25-50%	15-25%	10-15%	5-10%	<5%
Receptor Sensitivity	High sensitivity (all GW bodies)	1b	1b	1b	2a	2a	2b
Rece Sensi	Moderate/Low sensitivity	n/a	n/a	n/a	n/a	n/a	n/a

n/a = not applicable

^{**} For areas where complete vulnerability map is not available from GSI.

The pressures that are considered to pose a significant threat to groundwater are: urban and industrial areas, tillage, major roads and railways.

D. Risk category of groundwater body adjusted using available impact data

Predictive risk	Adjustments made using available groundwa	ter impact data		
category (from	Data criteria** Adjusted risk can			
Table C)				
16	One or more groundwater sampling stations have EITHER: Any individual selected trace organic >0.05 µg/l in more than 25% of groundwater samples, OR Total trace organic >0.01 µg/l in more than 2 samples, OR Maximum trace organic >100 µg/l in any one sample.	la or 1b, depending on level of confidence in the monitoring data		
2a	One or more groundwater sampling stations have EITHER: Any individual selected trace organic >0.05µg/l in more than 25% of groundwater samples, OR Total trace organic >0.01µg/l in more than 2 samples, OR Maximum total trace organic >0.1 µg/l in any one sample.	1b		
2b	One or more groundwater sampling stations have EITHER: Any individual selected trace organic >0.05µg/l in more than 25% of groundwater samples, OR Total trace organic >0.01µg/l in more than 2 samples, OR Maximum total trace organic >0.1 µg/l in any one sample.	2a or 1b, depending on level of confidence in the monitoring data		

^{**} copied from SEPA approach.

Summary details on pressures, receptors and WFD objective

RA Sheet	GWRA5
Receptor type	Groundwater body
Pressure type	Clustered on-site systems & leaking urban sewerage systems* – inorganics (N & P)
WFD objective	Chemical status
Assessment area	Surface extent of the groundwater body

^{*} Both pressures are assumed to produce similar pollutants. However, where the receptor is a groundwater body, the only pollutant considered is nitrate.

A. Pathway susceptibility

	PA	THWAY	Flow Regime (Horizontal pathway)					
SUSCEPTIBILITY FOR NITRATES		Karst aquifers	Fissured aquifers	Intergranular aquifers	Poorly productive aquifers			
	Subsoil	Low permeability subsoil	L	L	L	L		
/ay		Extreme	E	E	Н	M*		
Vertical pathway	ity	High	Н	Н	Н	M*		
ertical	Vulnerability	Moderate	M	M	M	L*		
Ve	Vulr	Low	L	L	L	L*		
		High to Low	Н	Н	Н	M*		

^{*}In poorly productive aquifers where denitrification is not considered likely to occur, these categories should be the same as the karst and fissured aquifers categories.

B. Impact Potential

The presence of urban and discontinuous urban fabric from CORINE and/or build up areas from the Ordnance survey maps make up the pressure layer on the groundwater body.

		Nitrogen Pathway Susceptibility (from Table A)					
IMPAC'	T POTENTIAL	Extreme	High	Moderate	Low		
sure	Present	High	Moderate	Low	Negligible		
Pressure magnitude	Absent	Negligible	Negligible	Negligible	Negligible		

C. Risk category based on predictive risk assessment

RISK CATEGORY		Proportion	of assessme	nt area with potentia	0	noderate i	mpact
		>40%	25-40%	15-25%	10-15%	5-10%	<5%
Receptor Sensitivity	High sensitivity* (nitrate-limited ecosystems)	n/a	n/a	n/a	n/a	n/a	n/a
Re	Moderate	1b	2a	2a	2a	2b	2b

^{*} Not applicable – see RA sheet GWDTERA3.

D. Risk category of groundwater body adjusted using available impact data

Predictive	Adjustments made using available impact data				
risk category	Data criteria	Adjusted risk category			
1b	Where significant impacts are known to occur	1a			
	by GSI, EPA, local authorities or RBD				
	consultants				
2a	Where significant impacts are known to occur	1b or 1a,			
	by GSI, EPA, local authorities or RBD	depending on confidence in data			
	consultants	and/or degree of impact.			

Summary details on pressures, receptors and WFD objective

RA Sheet	GWRA6
Receptor type	Groundwater body
Pressure type	Mining – mobile inorganics
WFD objective	Chemical status
Assessment area	Surface extent of the groundwater body

A. Pathway susceptibility

As mines are generally deep, this is not a factor in the RA process. The value of the groundwater resource is taken into account in considering the potential impacts.

B. Impact potential

		Impact Potential
Pressure magnitude*	High (based largely on expert judgement)	High
Pres magni	Low (based largely on expert judgement)	Low

^{*}expert judgement provided by GSI, report by Grennan (1996), RPS-KMM and EPA.

C. Risk category based on predictive risk assessment

		Impact potentia	l (from Table B)
RISK CATEGORY		High	Low
Receptor Sensitivity	High sensitivity*	n/a	n/a
Rec	Moderate	1b	2a

^{*}not applicable – see RA sheet GWDTERA4.

D. Risk category of groundwater body adjusted using available impact data

Predictive risk	Adjustments made using available impact data	
category	Data criteria	Adjusted risk category
(from Table C)		
1b	Where significant impacts are known to occur	1a
	by GSI, EMD, EPA, RBD consultants or local	
	authorities	
2a	Where impacts are known to occur by GSI,	1b or 1a,
	EMD, EPA, RBD consultants or local	depending on confidence in data
	authorities	and/or degree of impact.

E. Delineating Groundwater Bodies 'At Risk' from Point Sources

In most GWBs, point sources will affect only a small proportion of the GWB. In order to focus monitoring and further characterisation on relevant areas, it is recommended that where a point

source(s) is considered to be putting a groundwater body 'at risk' (categories 1a or 1b) and the impacted area is <50% of the GWB, subdivision should normally be undertaken. The boundaries must be based on the conceptual understanding of the area and on hydrogeological boundaries to flow. For instance, the surface water catchment may be used where it corresponds closely to the impacted catchment area. Alternatively, groundwater flow lines (estimated, in most instances) may be used.

Summary details on pressures, receptors and WFD objective

RA Sheet	GWRA7
Receptor type	Groundwater body
Pressure type	Quarries – mainly mobile organics
WFD objective	Chemical status
Assessment area	Surface extent of the groundwater body

A. Pathway susceptibility

This RA is based on expert judgement and impact data; consequently, pathway susceptibility is not included in the process.

B. Impact potential

		Impact Potential
Pressure magnitude*	High (based largely on expert judgement)	High
Pres magn	Low (based largely on expert judgement)	Low

^{*}expert judgement provided by GSI, RPS-KMM and EPA.

C. Risk category based on predictive risk assessment

		Impact potential (from Table B)	
RISK CATEGORY		High	Low
ptor	High sensitivity*	n/a	n/a
Receptor	Moderate	1b	2a

^{*}not applicable – see RA sheet GWDTERA5.

D. Risk category of groundwater body adjusted using available impact data

Predictive risk	Adjustments made using available impact data	
category	Data criteria	Adjusted risk category
(from Table C)		
1b	Where significant impacts are known to occur	1a
	by GSI, EMD, EPA, RBD consultants or local	
	authorities	
2a	Where impacts are known to occur by GSI,	1b or 1a,
	EMD, EPA, RBD consultants or local	depending on confidence in data
	authorities	and/or degree of impact.

E. Delineating Groundwater Bodies 'At Risk' from Point Sources

In most GWBs, point sources will affect only a small proportion of the GWB. In order to focus monitoring and further characterisation on relevant areas, it is recommended that where a point source(s) is considered to be putting a groundwater body 'at risk' (categories 1a or 1b) and the

impacted area is <50% of the GWB, subdivision should normally be undertaken. The boundaries must be based on the conceptual understanding of the area and on hydrogeological boundaries to flow. For instance, the surface water catchment may be used where it corresponds closely to the impacted catchment area. Alternatively, groundwater flow lines (estimated, in most instances) may be used.

Summary details on pressures, receptors and WFD objective

RA Sheet	GWRA8
Receptor type	Groundwater body
Pressure type	Landfill Sites
WFD objective	Chemical status
Assessment area	Surface extent of the groundwater body

A. Pathway susceptibility

This RA is based on expert judgement and impact data; consequently, a pathway susceptibility matrix is not included in the process.

B. Impact potential

		Impact Potential*
Pressure magnitude**	High (based largely on expert judgement)	High
Pres magni	Low (based largely on expert judgement)	Low

^{*} expert judgement provided by EPA and RPS-KMM.

C. Risk category based on predictive risk assessment

		Impact potentia	l (from Table B)
RIS	K CATEGORY	High	Moderate/Low
Receptor	High sensitivity*	n/a	n/a
Rece	Moderate	1b	2a

^{*}not applicable – see RA sheet GWDTERA6.

D. Risk category of groundwater body adjusted using available impact data

Predictive risk	Adjustments made using available impact data	
category	Data criteria	Adjusted risk category
(from Table C)		
1b	Where significant impacts are known to occur	1a
	by EPA, RBD consultants or local authorities	
2a	Where impacts are known to occur by EPA,	1b or 1a,
	RBD consultants or local authorities	depending on confidence in data
		and/or degree of impact.

^{**} Modern engineered landfills with fully lined cells are considered to exert a low pressure magnitude on groundwater, whereas, older un-lined cells in landfills and older closed landfills are assumed to exert a high pressure magnitude on the groundwater.

E. Delineating Groundwater Bodies 'At Risk' from Point Sources

In most GWBs, point sources will affect only a small proportion of the GWB. In order to focus monitoring and further characterisation on relevant areas, it is recommended that where a point source(s) is considered to be putting a groundwater body 'at risk' (categories 1a or 1b) and the impacted area is <50% of the GWB, subdivision should normally be undertaken. The boundaries must be based on the conceptual understanding of the area and on hydrogeological boundaries to flow. For instance, the surface water catchment may be used where it corresponds closely to the impacted catchment area. Alternatively, groundwater flow lines (estimated, in most instances) may be used.

Summary details on pressures, receptors and WFD objective

RA Sheet	GWRA9
Receptor type	Groundwater body
Pressure type	Oil Industry Infrastructure
WFD objective	Chemical status
Assessment area	Surface extent of the groundwater body

A. Pathway susceptibility

This RA is based on expert judgement and impact data; consequently, a pathway susceptibility matrix is not included in the process.

B. Impact potential

		Impact Potential*
Pressure magnitude**	High (based largely on expert judgement)	High
Pres magni	Low (based largely on expert judgement)	Low

^{*} expert judgement provided by EPA and RPS-KMM.

C. Risk category based on predictive risk assessment

RISK CATEGORY		Impact potential (from Table B)	
		High	Moderate/Low
eptor itivity	High sensitivity*	n/a	n/a
Rece Sensi	Moderate	1b**	2a**

^{*}not applicable – see RA sheet GWDTERA7.

D. Risk category of groundwater body adjusted using available impact data

Predictive risk	Adjustments made using available impact data	
category	Data criteria	Adjusted risk category
(from Table C)		
1b	Where significant impacts are known to occur	1a
	by EPA, RBD consultants or local authorities	
2a	Where significant impacts are known to occur	1b or 1a,
	by EPA, RBD consultants or local authorities	depending on confidence in data
		and/or degree of impact.

^{**} The EPA list of VOC licensed activities where there is large-scale storage of petroleum products is used as the national available dataset.

^{**}based on expert judgement of EPA staff

E. Delineating Groundwater Bodies 'At Risk' from Point Sources

In most GWBs, point sources will affect only a small proportion of the GWB. In order to focus monitoring and further characterisation on relevant areas, it is recommended that where a point source(s) is considered to be putting a groundwater body 'at risk' (categories 1a or 1b) and the impacted area is <50% of the GWB, subdivision should normally be undertaken. The boundaries must be based on the conceptual understanding of the area and on hydrogeological boundaries to flow. For instance, the surface water catchment may be used where it corresponds closely to the impacted catchment area. Alternatively, groundwater flow lines (estimated, in most instances) may be used.

Summary details on pressures, receptors and WFD objective

RA Sheet	GWRA10
Receptor type	Groundwater body
Pressure type	Contaminated Land
WFD objective	Chemical status
Assessment area	Surface extent of the groundwater body

A. Pathway susceptibility

This RA is based on expert judgement and impact data; consequently, a pathway susceptibility matrix is not included in the process.

B. Impact potential

		Impact Potential*
Pressure magnitude*	High (based largely on expert judgement)	High
Pres magn	Low (based largely on expert judgement)	Low

^{*} expert judgement provided by EPA and RPS-KMM.

C. Risk category based on predictive risk assessment

		Impact potential (from Table B)	
RISK CATEGORY		High	Moderate/Low
ptor	High sensitivity*	n/a	n/a
Receptor	Moderate	1b	2a

^{*} not applicable – see RA sheet GWDTERA8.

D. Risk category of groundwater body adjusted using available impact data

Predictive risk	Adjustments made using available impact data	
category	Data criteria	Adjusted risk category
(from Table C)		
1b	Where significant impacts are known to occur	1a
	by EPA, RBD consultants or local authorities	
2a	Where impacts are known to occur by EPA,	1b or 1a,
	RBD consultants or local authorities	depending on confidence in data
		and/or degree of impact.

E. Delineating Groundwater Bodies 'At Risk' from Point Sources

In most GWBs, point sources will affect only a small proportion of the GWB. In order to focus monitoring and further characterisation on relevant areas, it is recommended that where a point source(s) is considered to be putting a groundwater body 'at risk' (categories 1a or 1b) and the

impacted area is <50% of the GWB, subdivision should normally be undertaken. The boundaries must be based on the conceptual understanding of the area and on hydrogeological boundaries to flow. For instance, the surface water catchment may be used where it corresponds closely to the impacted catchment area. Alternatively, groundwater flow lines (estimated, in most instances) may be used.

Summary details on pressures, receptors and WFD objective

RA Sheet	GWRA11
Receptor type	Groundwater body
Pressure type	Trade Effluent Discharges
WFD objective	Chemical status
Assessment area	Surface extent of the groundwater body

A. Pressure Magnitude

Licensed discharges to groundwater, by virtue of their regulation either by a local authority or by the EPA (Section 4 licences and IPPC licences respectively) are assumed to exert a low pressure magnitude on the groundwater.

B. Pathway susceptibility

As most discharges to groundwater are directly into the ground, the soil layer is by-passed and hence groundwater vulnerability may be more appropriate than pathway susceptibility to represent the influence of the pathway. This assumption was made on the basis of expert opinion of the GSI, EPA and RPS-KMM.

C. Impact potential

With the assumption that licensed discharges to groundwater do not constitute a high pressure magnitude, an impact potential matrix is not required as the impact potential will be low in all cases. Therefore, the predicted risk category will always be 2a.

D. Risk category of groundwater body adjusted using available impact data

Predictive risk	Adjustments made using available impact data	
category	Data criteria Adjusted risk category	
2a	Where significant impacts are known to occur	1b or 1a,
	by EPA, local authorities or RBD consultants	depending on confidence in data
		and/or degree of impact.

Summary details on pressures, receptors and WFD objective

RA Sheet	GWRA12
Receptor type	Groundwater body
Pressure type	Wastewater Licensed Discharges to Groundwater – inorganics (N&P)
WFD objective	Chemical status
Assessment area	Surface extent of the groundwater body

A. Pressure Magnitude

Local Authority wastewater discharges to groundwater that have discharge consents from the EPA and Local Authority Section 4 licenses are assumed to exert a low pressure on the groundwater as opposed to non-consented discharges that are assumed to exert a high pressure on the groundwater. EPA expert judgement is also used to determine other instances of high pressure magnitude discharges.

B. Pathway susceptibility

As some of the urban waste-water discharges to groundwater are direct and others are indirect via percolation areas etc. it is not possible to factor in one single pathway into the risk assessment. For this risk assessment, EPA expert knowledge was used to assign a risk rating on a case-by-case basis.

C. Impact potential

		Impact Potential
Pressure magnitude	High (based largely on expert judgement)*	High
Pres	Low (based largely on expert judgement)	Low

^{*}expert judgement provided by EPA and RPS-KMM.

D. Risk category based on predictive risk assessment

RISK CATEGORY		Impact potential	
		High	Low
eptor itivity	High sensitivity*	n/a	n/a
Receptor	Moderate	1b	2a

^{*}not applicable – see RA sheet GWDTERA9.

E. Risk category of groundwater body adjusted using available impact data

Predictive risk	Adjustments made using available impact data				
category	Data criteria	Adjusted risk category			
1b	Where significant impacts are known to occur	1a			
	by EPA, RBD consultants or local authorities				
2a	Where impacts are known to occur by EPA,	1b or 1a,			
	RBD consultants or local authorities	depending on confidence in data			
		and/or degree of impact.			

Summary details on pressures, receptors and WFD objective

RA Sheet	SWRA1
Receptor type	Groundwater Dependent Ecosystems in Rivers and Lakes
Pressure type	Abstraction
WFD objective	Quantitative status
Assessment area	Surface extent of the groundwater body

Note: Further information and explanation is given in the Groundwater Working Group Report GW5 (2004) "Guidance on the Assessment of the Impact of Groundwater Abstractions".

A. Recharge Estimation

- a) Effective Rainfall Estimation
 - Obtained from recently produced Meteorological Service maps.
- b) Recharge Coefficient
 - The Recharge coefficient is the proportion of Effective Rainfall that may become Recharge.
 - It should be determined by using Table 1 (below).
- c) Applying a Recharge Cap on Poorly productive Aquifers
 - A recharge cap is applied to poorly productive aquifers, as they are not capable of accepting the available recharge due to their low transmissivity.
 - The recharge cap for Locally Important aquifers, which are moderately productive only in local zones (LI) is 200mm/yr, whereas the cap for Poor Aquifers (Pl & Pu) is 100mm/yr.

B. Impact potential

		Aquifer Type			
IMPACT POTENTIAL		Bedrock	Sand/gravel		
% 1	>30%	High	High		
ABS as a average scharge	20 to 30%	High	Moderate		
F F	10 to 20%	Moderate	Low		
GW o	2 to 10%	Low	Low		
	<2%	Negligible	Negligible		

C. Risk category based on predictive risk assessment and available impact data

Potential Impact	Evidence for GW level	No/ insufficient	Evidence of no GW
	decline	evidence for GW	decline
		level decline	
High	At Significant Risk (1a)	Probably at risk (1b)	Not at significant risk (low
			confidence) (2a) to Not at
			significant risk (2b) based
			on confidence in the data
Moderate	At Significant Risk (1a)	Not at significant risk	Not at significant risk (2b)
		(low confidence) (2a)	
Low	At Significant Risk (1a) to	Not at significant risk	Not at significant risk (2b)
	Probably at risk (1b) based	(low confidence) (2a)	
	on confidence in the data		

Table 1 Recharge Coefficients for different hydrogeological settings

category		Hydrogeological setting	Recharge coefficient (rc)		
			Min (%)	Inner Range	Max (%)
Extreme	1.i	Areas where rock is at ground surface		80-90	100
	1.ii	Sand/gravel overlain by 'well drained' soil		80-90	100
		Sand/gravel overlain by 'poorly drained' (gley) soil			
	1.iii	Till overlain by 'well drained' soil	45	50-70	80
	1.iv	Till overlain by 'poorly drained' (gley) soil	15	25-40	50
	1.v	Sand/ gravel aquifer where the water table is ≤ 3 m below surface	70	80-90	100
	1.vi	Peat	15	25-40	50
High	2.i	Sand/gravel aquifer, overlain by 'well drained' soil	60	80-90	100
	2.ii	High permeability subsoil (sand/gravel) overlain by 'well drained' soil	60	80-90	100
	2.iii	High permeability subsoil (sand/gravel) overlain by 'poorly drained' soil			
	2.iv	Moderate permeability subsoil overlain by 'well drained' soil	35	50-70	80
	2.v	Moderate permeability subsoil overlain by 'poorly drained' (gley) soil	15	25-40	50
	2.vi	Low permeability subsoil	10	23-30	40
	2.vii	Peat	0	5-15	20
Moderate	3.i	Moderate permeability subsoil and overlain by 'well drained' soil	25	30-40	60
	3.ii	Moderate permeability subsoil and overlain by 'poorly drained' (gley) soil	10	20-40	50
	3.iii	Low permeability subsoil	5	10-20	30
	3. iv	Basin peat	0	3-5	10
Low	4.i	Low permeability subsoil	2	5-15	20
	4.ii	Basin peat	0	3-5	10
High to	5.i	High Permeability Subsoils (Sand & Gravels)	60	90	100
Low	5.ii	Moderate Permeability Subsoil overlain by well drained soils	25	60	80
	5.iii	Moderate Permeability Subsoils overlain by poorly drained soils	10	30	50
	5.iv	Low Permeability Subsoil	2	20	40
	5.v	Peat	0	5	20

Summary details on pressures, receptors and WFD objective

RA Sheet	SWRA2
Receptor type	Groundwater dependent ecosystems in rivers, lakes, estuaries and
	lagoons
Pressure type	Diffuse – mobile inorganics (NO ₃)
WFD objective	Chemical status
Assessment area	Surface extent of the groundwater body

A. Pathway susceptibility

			Flow Regime (Horizontal pathway)				
PA	PATHWAY SUSCEPTIBILITY		Karst aquifers	Fissured aquifers	Intergranular aquifers	Poorly productive aquifers*	
	& oil	'Wet' soil	L	L	L	L	
1y***	Soil & subsoil	Low permeability subsoil	L	L	L	L	
Vertical pathway**	Vulnerability	Extreme	Е	Е	Н	L	
		High	Н	Н	Н	L	
		erab	Moderate	M	M	M	L
		Low	L	L	L	L	
		High to Low**	Н	Н	Н	M	

^{*} These aquifers are not considered to be contributing a significant proportion of water to rivers and lakes and therefore are not included in pathway susceptibility.

B. Impact potential

IMPACT POTENTIAL*		Pathway Susceptibility (from Table A)				
		Extreme	High	Moderate	Low	
nde	>2.0 LU ha ⁻¹ or >33% tillage	High	High	Moderate	Low	
Pressure magnitude	1.5-2.0 LU ha ⁻¹ or 18-33% tillage	Moderate	Moderate	Low	Low	
	1.0-1.5 LU ha ⁻¹ or 3-18% tillage	Low	Low	Low	Low	
Pres	<1.0 LU ha ⁻¹ or <3% tillage	Negligible	Negligible	Negligible	Negligible	

^{*}Deriving Impact Potential

Individual Impact Potential maps are derived for the three types of pressures: cattle/sheep, pigs/poultry and tillage i.e. each grid cell within the maps will have three Impact Potential categories.

The *highest* Impact Potential category is taken for each cell, regardless of the type of pressure.

Within each GWB, the total area of 'H' plus 'M' Impact Potential is used to determine whether the GWB is 'at risk' (see C below).

^{**} For areas where complete vulnerability map is not available form GSI.

^{***} The 'wet' soil and low permeability subsoil layers take precedence over the vulnerability layers.

C. Risk category based on predictive risk assessment

RISK CATEGORY		Proportion of assessment area with high and moderate impact potential						
		>50%	25-50%*	15-25%	10-15%	5-10%	<5%	
Receptor Sensitivity	High sensitivity (nitrate-limited ecosystems)	1b	1b	1b	2a	2a	2b	
Rec	Moderate (Rivers)	1b	1b	2a	2a	2b	2b	

^{*}The basis for this threshold is given in Guidance Document no. GW10 (GW WG, 2004).

Predictive risk	Adjustments made using available groundwater impact data					
category	Data criteria	Adjusted risk category				
1b	Weighted mean NO ₃ -N >11.3 mg l ⁻¹	1a or 1b,				
		depending on level of				
		confidence in the				
		monitoring data				
2a		1b or 2a,				
	Weighted mean NO ₃ -N 5.65-11.3 mg l ⁻¹	depending on level of				
		confidence in the				
2b		monitoring data				
2b	Weighted mean NO ₃ -N 2.0-5.65 mg 1 ⁻¹	2a				
	Weighted mean NO ₃ -N <2.0 mg l ⁻¹	2b				

18. Groundwater Risk Assessment SWRA3

Summary details on pressures, receptors and WFD objective

RA Sheet	SWRA3
Receptor type	Groundwater Dependent Ecosystems in river, lake, estuary and lagoon
	Water Bodies
Pressure type	Diffuse – low mobility inorganics (PO ₄)
WFD objective	Chemical status
Assessment area	Surface extent of the groundwater body

A. Pathway susceptibility

PA	PATHWAY			Flow Re	Flow Regime (horizontal pathway)						
SUSCEPTIBILITY			Karst aquifers Fissured aquifers		Intergranular aquifers	Poorly productive aquifers					
	Soil & karst features Dry Wet Dry Wet soil soil		n/a	Dry soil	Wet soil						
hway	,	eme	0-1 m soil & subsoil	Е	Е	Е	Н	n/a **	Н	M	
Vertical pathway	Vulnerability	Extreme	1-3 m soil subsoil	Е	E*	Н	M	n/a	M	L	
erti	High		M M		Л	M L					
>	> S Moderate		L		L		L	L			
	Low		I	L			L	L			
	High to low***		N	Л	N	Л	M	I			

n/a = not applicable

B. Impact potential

		Pathway Susceptibility (from Table A)					
IMPA	ACT POTENTIAL*	Extreme High		Moderate	Low		
	>2.0 LU ha ⁻¹ or >33% tillage	High	High	Low	Low		
nitude	1.5-2.0 LU ha ⁻¹ or 18-33% tillage	High	Moderate	Low	Low		
magnitude	1.0-1.5 LU ha ⁻¹ or 3-18% tillage	Moderate	Low	Low	Low		
Pressure	0.5-1.0 LU ha ⁻¹ or <3% tillage	Moderate	Negligible	Negligible	Negligible		
Ь	<0.5 LU ha ⁻¹	Low	Negligible	Negligible	Negligible		

^{*}Deriving Impact Potential

Individual Impact Potential maps are derived for the three types of pressures: cattle/sheep, pigs/poultry and tillage i.e. each grid cell within the maps will have three Impact Potential categories.

The *highest* Impact Potential category is taken for each cell, regardless of the type of pressure.

Within each GWB, the total area of 'H' plus 'M' Impact Potential is used to determine whether the GWB is 'at risk' (see C below).

^{*} This ranking allows for bypass of the soil/subsoil at swallow holes; where swallow holes are absent, the appropriate ranking is 'H'. However, the default ranking is 'E'.

^{**} Where sand/gravel aquifers are classed as 'extremely' vulnerable due to the presence of a shallow water table, the pathway susceptibility is considered to be moderate.

^{***} For areas where complete vulnerability map is not available from GSI.

C. Risk category based on predictive risk assessment

RISK CATEGORY		Proportion of assessment area with high and moderate impact potential						
		>40%	25-40%	15-25%	10-15%	5-10%	<5%	
ptor	High sensitivity*	1b	1b	2a	2a	2a	2b	
Receptor	Moderate	1b	2a	2a	2a	2b	2b	

^{*} high sensitivity refers to certain sensitive lakes and lagoons

Adjustments	Adjustments for rivers and lakes in GWB						
Predictive	Data Criteria**	Adjusted risk					
Risk		category					
Category							
1b	MRP	1a					
	$> 60 \mu g l^{-1}$						
2a	MRP	1b					
	30-60 μg l ⁻¹						
	MRP	2a or 1b,					
	30-60 μg l ⁻¹	depending on level					
	¹ 20-30 μg l ⁻¹	of confidence in					
2b		the monitoring data					
	MRP	2b					
	$< 30 \mu g l^{-1}$						
	¹ <20 μg l ⁻¹						

^{*} Note: generally only MRP data will be available for groundwater, in which case only river criteria can apply.

** Median unfiltered Molybdate Reactive Phosphorus based on Phosphorus regulations which indicate that when in-river median MRP> 30µg I⁻¹ the Q-value is generally less than Q4 (reference: McGarrigle *et al.* (2002) Appendix I). The 60 µg I⁻¹ threshold is taken from SEPA, but is used here to highlight particular hotspots.

¹ For protected areas (SPA and SAC) more stringent criteria apply. The 20 μg l^{-1} threshold is taken from McGarrigle *et al.* (2002) Appendix I, which indicates that when in-river median MRP> 20 μg l^{-1} the Q-value is generally less than Q4-5.

19. Groundwater Risk Assessment SWRA4

Summary details on pressures, receptors and WFD objective

RA Sheet	SWRA4
Receptor type	Groundwater Dependent Ecosystems in River & Lake Water Bodies
Pressure type	Diffuse – mobile organics (pesticides and PAHs)
WFD objective	Chemical status
Assessment area	Surface extent of the groundwater bodies contributing significant flows to surface waters (i.e. productive aquifers).

A. Pathway susceptibility

PA	PATHWAY SUSCEPTIBILITY		Flow Regime (Horizontal pathway)				
SUS			Karst aquifers	Fissured aquifers	Intergranular aquifers	Poorly productive aquifers	
	Sub- soil	Low permeability subsoil*	L	L	L	L	
/ay		Extreme	Е	Е	Н	М	
pathway	ility	High	Н	Н	Н	L	
Vertical	Vulnerability	Moderate	M	M	M	L	
Ve	Vul	Low	L	L	L	L	
		High to low**	Н	Н	Н	M	

^{*} In areas where GSI subsoil permeability map is unavailable, use vulnerability map alone.

B. Impact potential

		Pathway Susceptibility (from Table A)					
IMPACT POTENTIAL		Extreme High		Moderate	Low		
sure tude*	Present	High	Moderate	Low	Negligible		
Pressure magnitude	Absent	Negligible	Negligible	Negligible	Negligible		

^{*} Pressure magnitude

C. Risk category based on predictive risk assessment

RISK CATEGORY		Proportion of assessment area with high and moderate impact potential						
		>50%	25-50%	15-25%	10-15%	5-10%	<5%	
Receptor Sensitivity	High sensitivity (all GW bodies)	1b	1b	1b	2a	2a	2b	
Rece	Moderate/Low sensitivity	n/a	n/a	n/a	n/a	n/a	n/a	

^{**} For areas where complete vulnerability map is not available from GSI.

The pressures that are considered to pose a significant threat to groundwater are: urban and industrial areas, tillage, major roads and railways.

Predictive risk	Adjustments made using available groundwa	ter impact data
category (from Table C)	Data criteria**	Adjusted risk category
1b	One or more groundwater sampling stations have EITHER: Any individual selected trace organic >0.05 µg/l in more than 25% of groundwater samples, OR Total trace organic >0.01 µg/l in more than 2 samples, OR	1a or 1b, depending on level of confidence in the monitoring data
	Maximum trace organic >100 μg/l in any one sample.	
2a	One or more groundwater sampling stations have EITHER: Any individual selected trace organic >0.05µg/l in more than 25% of groundwater samples, OR Total trace organic >0.01µg/l in more than 2 samples, OR Maximum total trace organic >0.1 µg/l in any one sample.	16
2b	One or more groundwater sampling stations have EITHER: Any individual selected trace organic >0.05µg/l in more than 25% of groundwater samples, OR Total trace organic >0.01µg/l in more than 2 samples, OR Maximum total trace organic >0.1 µg/l in any one sample.	2a or 1b, depending on level of confidence in the monitoring data

^{**} copied from SEPA approach.

20. Groundwater Risk Assessment SWRA5

Summary details on pressures, receptors and WFD objective

RA Sheet	SWRA5
Receptor type	Groundwater Dependent Ecosystems in Rivers, Lakes & Estuaries
Pressure type	Clustered on-site systems & Leaking Urban Sewerage Systems* – inorganics (N & P)
WFD objective	Chemical status
Assessment area	Surface extent of the groundwater body

^{*} Both pressures are assumed to produce similar pollutants. Nitrates and phosphate are the pollutants considered in this RA.

A. Pathway susceptibility

Table A1

PA	ΓHWA	Y	Flow Regime (Horizontal pathway)					
	SUSCEPTIBILITY FOR		Karst	Fissured	Intergranular	Poorly productive		
NIT	NITRATES		aquifers	aquifers	aquifers	aquifers		
	Subsoil	Low permeability subsoil	L	L	L	L		
/ay		Extreme	Е	E	Н	M*		
pathway	lity	High	Н	Н	Н	M*		
Vertical	Vulnerability	Moderate	M	M	M	L*		
) 	Vulr	Low	L	L	L	L*		
		High to Low	Н	Н	Н	M*		

^{*}In poorly productive aquifers where denitrification is not considered likely to occur, these categories should be the same as the karst and fissured aquifers categories.

Table A2

PA	THWAY	Y	Flow Regime (Horizontal pathway)				
	SCEPTI OSPHA	BILITY FOR TES	Karst Fissured Intergranular Poorly aquifers aquifers aquifers aquifers aquifers			productive	
y.	Subsoil	Low permeability subsoil	L	L	L	L	
thwa		Extreme	Е	Е	n/a *	Н	
al pa	ility	High	M	M	n/a *	M	
Vertical pathway	Vulnerability	Moderate	M	M	M	L	
>	Vulr	Low	L	L	L	L	
		High to Low**	M	M	M	M	

^{*}Where sand/gravel aquifers are classed as 'extremely' vulnerable due to the presence of a shallow water table, the pathway susceptibility is considered to be moderate.

^{**}Where complete GSI vulnerability map is not available.

B. Impact Potential

The presence of urban and discontinuous urban fabric from CORINE and/or built up areas from the Ordnance Survey maps make up the pressure layer on the groundwater body.

		Nitrate Pathway Susceptibility (from Table A1)					
IMPACT	POTENTIAL	Extreme High		Moderate	Low		
essure gnitude	Present	High	Moderate	Low	Negligible		
Pressure magnitude	Absent	Negligible	Negligible	Negligible	Negligible		

		Phosphate Pathway Susceptibility (from Table A2)					
IMPACT	POTENTIAL	Extreme	High	Moderate	Low		
sure	Present	High	Moderate	Low	Negligible		
Pressure magnitude	Absent	Negligible	Negligible	Negligible	Negligible		

C. Risk category based on predictive risk assessment

RISK CATEGORY		Proportion of assessment area with high and moderate impact potential						
		>40%	25-40%	15-25%	10-15%	5-10%	<5%	
ıtant	Phosphate	1b	1b	1b	2a	2a	2b	
Pollutant	Nitrate	1b	2a	2a	2a	2b	2b	

Predictive	Adjustments made using available impact data			
risk category	Data criteria	Adjusted risk category		
1b	Where significant impacts are known to occur	1a		
	by GSI, EPA, local authorities or RBD			
	consultants			
2a	Where significant impacts are known to occur	1b or 1a,		
	by GSI, EPA, local authorities or RBD	depending on confidence in data		
	consultants	and/or degree of impact.		

21. Groundwater Risk Assessment SWRA6

Summary details on pressures, receptors and WFD objective

RA Sheet	SWRA6
Receptor type	Groundwater dependent ecosystems in River, Lake and Estuary Water
	Bodies
Pressure type	Mining – mobile inorganics
WFD objective	Chemical status
Assessment area	Surface extent of the groundwater body

A. Pathway susceptibility

As mines are generally deep, this is not a factor in the RA process. The value of the groundwater resource is taken into account in considering the potential impacts.

B. Impact potential

		Impact Potential
Pressure magnitude	High (based largely on expert judgement)*	High
Pres magn	Low (based largely on expert judgement)	Low

^{*}expert judgement provided by Grennan (1996), RPS-KMM and EPA.

C. Risk category based on predictive risk assessment

RISK CATEGORY		Impact potential (from Table B	
		High	Low
eptor itivity	High sensitivity*	n/a	n/a
Rece	Moderate	1b	2a

^{*}not applicable – see RA sheet GWDTERA4.

Predictive risk	Adjustments made using available impact data				
category	Data criteria	Adjusted risk category			
(from Table C)					
1b	Where significant impacts are known to occur	1a			
	by GSI, EMD, EPA, RBD consultants or local				
	authorities				
2a	Where impacts are known to occur by GSI,	1b or 1a,			
	EMD, EPA, RBD consultants or local	depending on confidence in data			
	authorities	and/or degree of impact.			

22. Groundwater Risk Assessment GWDTERA1

Summary details on pressures, receptors and WFD objective

RA Sheet	GWDTERA1
Receptor type	Groundwater Dependent Terrestrial Ecosystems (incl. turloughs)
Pressure type	Abstraction
WFD objective	Quantitative status
Assessment area	Catchment area of ecosystem

A. Recharge Estimation

a) Effective Rainfall Estimation

Obtained from recently produced Meteorological Service maps.

b) Recharge Coefficient

- The Recharge coefficient is the proportion of Effective Rainfall that may become Recharge.
- It should be determined by using Table 1 (below).

c) Applying a Recharge Cap on Poorly productive Aquifers

- A recharge cap is applied to poorly productive aquifers, as they are not capable of accepting the available recharge due to their low transmissivity.
- The recharge cap for Locally Important aquifers, which are moderately productive only in local zones (Ll) is 200mm/yr, whereas the cap for Poor Aquifers (Pl & Pu) is 100mm/yr.

B. Catchment Area of GWDTE

The RA applies to the area contributing water to the GWDTE. Therefore, the catchment area of the GWDTE must be delineated, even if only approximately. The boundaries must be based on the conceptual understanding of the area and on hydrogeological boundaries to flow. For instance, the surface water catchment may be used where it equates closely to the catchment area. Alternatively, groundwater flow lines (estimated, in most instances) may be used.

C. Impact potential

The impact of abstraction may result from general abstraction in the catchment area and/or from wells in the immediate vicinity of the boundary of the GWDTE. Impacts can also be caused by drainage; only arterial drainage is considered in this assessment.

C1. Potential impact resulting from abstraction in GWDTE catchment area Use Table below.

IMPACT POTENTIAL		GWDTE Sensitivity to Abstraction			
		High	Moderate to Low		
% of "ge in of	>20%	High	High		
, 🚾 r [+]	10 to 20%	High	Moderate		
	5 to 10%	High	Low		
GWAB average 'catcl	<5%	Moderate	Low		

C2. Local abstraction & arterial drainage

Use Table below.

			GWDTE Sensitivity to Abstraction			
	IMPACT P	OTENTIAL	High	Moderate to Low		
age		Within GWDTE	High	Moderate/low		
draina	$>100 \text{ m}^3/\text{d}$	Within GWDTE	High	High		
arterial drainage		Within 100 m of boundary	High	Moderate/low		
\$	$>500 \text{ m}^3/\text{d}.$	Within GWDTE	High	High		
ctions		Within 100 m of boundary	High	High		
ocal abstractions		Within 500 m of boundary	High	Moderate/low		
Local	Arterial drainage	Within 100 m of boundary	High	High		

D. Risk category based on predictive risk assessment and available impact data

Potential Impact	Evidence for GW level decline	No/ insufficient evidence for GW level decline	Evidence of no GW decline
High	At Significant Risk (1a)	Probably at risk (1b)	Not at significant risk (low confidence) (2a) to Not at significant risk (2b) based on confidence in the data
Moderate	At Significant Risk (1a)	Not at significant risk (low confidence) (2a)	Not at significant risk (2b)
Low	At Significant Risk (1a) to Probably at risk (1b) based on confidence in the data	Not at significant risk (low confidence) (2a)	Not at significant risk (2b)

Table 1 Recharge coefficients for different hydrogeological settings

Vulnerability category		Hydrogeological setting	Recharge coefficient (rc)			
category			Min (%)	Inner Range	Max (%)	
Extreme	1.i	Areas where rock is at ground surface		80-90	100	
	1.ii	Sand/gravel overlain by 'well drained' soil	60	80-90	100	
		Sand/gravel overlain by 'poorly drained' (gley) soil				
	1.iii	Till overlain by 'well drained' soil	45	50-70	80	
	1.iv	Till overlain by 'poorly drained' (gley) soil	15	25-40	50	
	1.v	Sand/ gravel aquifer where the water table is ≤ 3 m below surface	70	80-90	100	
	1.vi	Peat	15	25-40	50	
High	2.i	Sand/gravel aquifer, overlain by 'well drained' soil	60	80-90	100	
	2.ii	High permeability subsoil (sand/gravel) overlain by 'well drained' soil	60	80-90	100	
	2.iii	High permeability subsoil (sand/gravel) overlain by 'poorly drained' soil				
	2.iv	Moderate permeability subsoil overlain by 'well drained' soil	35	50-70	80	
	2.v	Moderate permeability subsoil overlain by 'poorly drained' (gley) soil	15	25-40	50	
	2.vi	Low permeability subsoil	10	23-30	40	
	2.vii	Peat	0	5-15	20	
Moderate	3.i	Moderate permeability subsoil and overlain by 'well drained' soil	25	30-40	60	
	3.ii	Moderate permeability subsoil and overlain by 'poorly drained' (gley) soil	10	20-40	50	
	3.iii	Low permeability subsoil	5	10-20	30	
	3. iv	Basin peat	0	3-5	10	
Low	4.i	Low permeability subsoil	2	5-15	20	
	4.ii	Basin peat	0	3-5	10	
High to	5.i	High Permeability Subsoils (Sand & Gravels)	60	90	100	
Low	5.ii	Moderate Permeability Subsoil overlain by well drained soils	25	60	80	
	5.iii	Moderate Permeability Subsoils overlain by poorly drained soils	10	30	50	
	5.iv	Low Permeability Subsoil	2	20	40	
	5.v	Peat	0	5	20	

23. Groundwater Risk Assessment GWDTERA2a

Summary details on pressures, receptors and WFD objective

RA Sheet	GWDTERA2a
Receptor type	Groundwater Dependent Terrestrial Ecosystems: Turloughs
Pressure type	Diffuse – low mobility inorganics (PO ₄)
WFD objective	Chemical status
Assessment area	Catchment area of GWDTE

Note: Further information and explanation is given in the Groundwater Working Group Report GW9 (2004)

A. Pathway susceptibility

Catchment area of the turlough

The RA applies to the area contributing water to the GWDTE. Therefore, the catchment area of the GWDTE must be delineated, even if only approximately. The boundaries must be based on the conceptual understanding of the area and on hydrogeological boundaries to flow. For turlough catchments this will include an assessment of the flow types in the catchment i.e. epikarstic, conduit type, or a combination thereof, and identification of dominant flow routes. Delineation will then include one or more of topographic, bedrock or groundwater catchment delineation.

				Flow Regim	e (horizontal pa	thway)	
PATHWAY SUSCEPTIBILITY			Y	Karst aquifers		Poorly productive and/or fissured aquifers contributing surface waters to turlough catchment.	
y	Soil & contributing area			Dry soil	Wet soil	<50 m from a stream channel	Remainder of catchment area
Vertical pathway	ty	Extreme	0-1 m soil & . subsoil	Е	Е	E	Н
ical pa	ulnerability		1-3 m soil subsoil	Е	E*		
Vert	ulne	High		M			
		Moderate		L			
		Low			L		

n/a = not applicable

	IMPACT POTENTIAL _	Pathway S	Susceptibility	from Table A	<u>v)</u>
		Extreme	High	Moderate	Low
	>2.0 LU ha ⁻¹ or >33% tillage	High	High	Low	Low
	Heavily fertilized forestry on peat*		_		
de	Q value < 4** in surface water				
lifu	1.5-2.0 LU ha ⁻¹ or 18-33% tillage	High	Moderate	Low	Low
magnitude					
	1.0-1.5 LU ha ⁻¹ or 3-18% tillage	Moderate	Low	Low	Low
Pressure					
ess	$0.5-1.0 \text{ LU ha}^{-1} \text{ or } < 3\% \text{ tillage}$	Moderate	Negligible	Negligible	Negligible
Pro	_				
	<0.5 LU ha ⁻¹	Low	Negligible	Negligible	Negligible

^{*}Heavily fertilized forestry (on peat) corresponds almost completely to Sitka spruce. This measure is taken to be a surrogate measure of associated nutrient load from forestry.

^{*}This ranking allows for bypass of the soil/subsoil at swallow holes; where swallow holes are absent, the appropriate ranking is 'H'. However, the default ranking is 'E'.

^{**}Q value of surface water contributed by poorly productive and/or fissured aquifers and/or of any surface waters within the catchment area. A Q value of ≥ 4 corresponds to $\le 30 \mu g/l$ MRP

C. Risk category based on predictive risk assessment

RISK CATEGORY		_	Proportion of turlough catchment with high and moderate impact potential						
		>40%	25-40%	15-25%	10-15%	5-10%	<5%		
tivity	Extreme sensitivity*	1b	1b	1b	2a	2a	2b		
or Sensitivity	High sensitivity	1b	1b	2a	2a	2b	2b		
Receptor	Moderate sensitivity	1b	2a	2a	2b	2b	2b		

^{*}Extreme, high and moderate receptor sensitivity classes were defined by NPWS using turlough vegetation data.

D. Risk category of turlough catchment adjusted using available impact data

	Adjustments for turlough catchment										
	Turlou	gh data Crit	eria*	Groundwater data criteria***							
Predictive Risk Category	High/moderate sensitivity receptors**	Extremely sensitive receptors	Adjusted Risk Category	High/moderate sensitivity receptors**	Extremely sensitive receptors	Adjusted Risk Category					
1b	Total P > 30 μg l ⁻¹	Total P >10 μg l ⁻¹	1a	1a MRP MRP >30 μg l ⁻¹ >10 μg l ⁻¹		1a					
2a	Total P 20-30 μg 1 ⁻¹		1b	MRP 20-30 μg l ⁻¹		1b					
2b	Total P 10-20 μg l ⁻¹ Total P <10 μg l ⁻¹	Total P <10 μg l ⁻¹	2a or 1b depending on confidence in the monitoring data 2b	MRP 10-20 μg l ⁻¹ MRP <10μg l ⁻¹	MRP <10 μg l ⁻¹	2a or 1b depending on confidence in the monitoring data 2b					

^{*} Mean TP of turlough water, based on a mean of monthly sampling during the flood period, but excluding the extreme beginning and end of the flood period. Thresholds are based on the Phosphorus Regulations' standards for total phosphorus (TP) in lakes, which indicate that when mean TP \leq 10 µg Γ 1 the lake is oligotrophic and \geq 10 to \leq 20 µg Γ 1 mesotrophic. (Reference: McGarrigle *et al.* (2002) Appendix I).

E. Additional Impact data

In addition to the type of phosphorus data described in Table D above, a number of turloughs have been assessed by the Ecological sub-group of the Turloughs Working Group, and the degree to which they are impacted has been described qualitatively. These data may be used to adjust the risk category of the turlough catchment, with the proviso that the data apply only to the immediate turlough basin and not the catchment, and that the data may not be consistent, as they reflect the focus of the visiting ecologist.

^{**} Sensitivity of receptor (turlough) is that defined by NPWS from turlough vegetation studies.

^{***} Groundwater data is expressed as median unfiltered Molybdate Reactive Phosphorus (MRP). As many turloughs are conduit fed it is assumed that there will be very little attenuation in phosphorus concentrations in groundwater discharges to the turlough. For this reason it was considered more appropriate to use lake rather than river phosphorus regulation standards. See note (*) above.

F. Expert Review Recommendations

Expert review of the outcome of this risk assessment is recommended by EPA staff with field experience of the catchment area of the GWDTE and knowledge of surface water impacts.

Final expert review is recommended by National Parks and Wildlife Service staff who may recommend upgrading of the risk category based on available impact data and local knowledge of the SAC/SPA involved.

24. Groundwater Risk Assessment GWDTERA2b

Summary details on pressures, receptors and WFD objective

RA Sheet	GWDTERA2b
Receptor type	Groundwater Dependent Terrestrial Ecosystems (excluding turloughs)
Pressure type	Diffuse – low mobility inorganics (PO ₄)
WFD objective	Chemical status
Assessment area	Catchment area of GWDTE

Note: Further information and explanation is given in the Groundwater Working Group Report GW11 (2004)

A. Pathway susceptibility

Catchment area of the GWDTE

The RA applies to the area contributing water to the GWDTE. Therefore, the catchment area of the GWDTE must be delineated, even if only approximately. The boundaries must be based on the conceptual understanding of the area and on hydrogeological boundaries to flow.

Table A1

			Flow Regime (horizontal pathway)							
PATHWAY SUSCEPTIBILITY			Karst aquifers		Fissured aquifers		Intergranula r aquifers		roductive ifers	
	Soil & karst features			Dry soil	Wet soil	Dry soil	Wet soil	n/a	Dry soil	Wet soil
Vertical pathway	1	Extreme	0-1 m soil & subsoil	Е	Е	Е	Н	n/a **	Н	M
	ulnerability		1-3 m soil & subsoil	Е	E*	Н	M	n/a	М	L
Λ	/ul	High		N	M		Л	M	I	
		Moderate		I	L			L	I	
		Low		I		I		L	I	
		High to 1	ow***	N	Л	N	Л	M	I	

n/a = not applicable

IMPACT POTENTIAL*		Pathway Susceptibility (from Table A)						
		Extreme	High	Moderate	Low			
	>2.0 LU ha ⁻¹	High	High	Low	Low			
de	or >33% tillage							
magnitude	1.5-2.0 LU ha ⁻¹ or	High	Moderate	Low	Low			
agn	18-33% tillage							
	1.0-1.5 LU ha ⁻¹ or	Moderate	Low	Low	Low			
ıre	3-18% tillage							
Pressure	0.5-1.0 LU ha ⁻¹ or	Moderate	Negligible	Negligible	Negligible			
Pr(<3% tillage							
	<0.5 LU ha ⁻¹	Low	Negligible	Negligible	Negligible			

^{*}Deriving Impact Potential

^{*} This ranking allows for bypass of the soil/subsoil at swallow holes; where swallow holes are absent, the appropriate ranking is 'H'. However, the default ranking is 'E'.

^{**} Where sand/gravel aquifers are classed as 'extremely' vulnerable due to the presence of a shallow water table, the pathway susceptibility is considered to be moderate.

^{***} For areas where complete vulnerability map is not available from GSI.

Individual Impact Potential maps are derived for the three types of pressures: cattle/sheep, pigs/poultry and tillage i.e. each grid cell within the maps will have three Impact Potential categories.

The *highest* Impact Potential category is taken for each cell, regardless of the type of pressure.

Within each GWB, the total area of 'H' plus 'M' Impact Potential is used to determine whether the GWB is 'at risk' (see C below).

C. Risk category based on predictive risk assessment

RISK CATEGORY		Proportion of assessment area with high and moderate impact potential						
		>40%	25-40%	15-25%	10-15%	5-10%	<5%	
ptor	Extreme sensitivity*	1b	1b	1b	2a	2a	2b	
Receptor	High/Moderate	1b	1b	2a	2a	2b	2b	

^{*}Receptor sensitivity refers to certain sensitive GWDTE as determined by NPWS

D. Risk category of GWDTE adjusted using available groundwater data (*)

	Adjustments for GWDTE catchment							
Predictive	Groundwater data criteria**							
Risk	High/moderate	Extremely	Adjusted Risk					
Category	sensitivity receptors**	sensitive receptors	Category					
1b	MRP	MRP	1a					
	>30 μg l ⁻¹	>15 μg l ⁻¹						
2a	MRP		1b					
	20-30 μg l ⁻¹							
	MRP	MRP	2a or 1b					
	15-20 μg l ⁻¹	<15 μg l ⁻¹	depending on					
2b			confidence in the					
20			monitoring data					
	MRP		2b					
	<15 μg l ⁻¹							

^{*} Note: generally only MRP data will be available for groundwater, in which case only river criteria can apply.
** Groundwater data are expressed as median unfiltered Molybdate Reactive Phosphorus (MRP) based on Phosphorus regulations which indicate that when in-river median MRP >15 μ g Γ^1 , >20 μ g Γ^1 and > 30 μ g Γ^1 the Q-value is generally less than Q5, Q4-5 and Q4 respectively. (Reference: McGarrigle *et al.* (2002) Appendix I).

E. Expert Review Recommendations

Expert review of the outcome of this risk assessment is recommended by EPA staff with field experience of the catchment area of the GWDTE and knowledge of surface water impacts.

Final expert review is recommended by National Parks and Wildlife Service staff who may recommend upgrading of the risk category based on available impact data and local knowledge of the SAC/SPA involved.

25. Groundwater Risk Assessment GWDTERA3

Summary details on pressures, receptors and WFD objective

RA Sheet	GWDTERA3
Receptor type	Groundwater Dependent Terrestrial Ecosystems
Pressure type	Clustered on-site systems & Leaking Urban Sewerage Systems* – inorganics (N & P)
WFD objective	Chemical status
Assessment area	Catchment area of GWDTE

^{*} Both pressures are assumed to produce similar pollutants. Nitrates and phosphate are the pollutants considered in this RA.

A. Pathway susceptibility

Table A1

PA	ΓHWA	Y	Flow Regime (Horizontal pathway)				
		BILITY FOR	Karst	Fissured	Intergranular	Poorly productive	
NIT	RATES		aquifers	aquifers	aquifers	aquifers	
	Subsoil	Low permeability subsoil	L	L	L	L	
vay		Extreme	Е	E	Н	M*	
pathway	ity	High	Н	Н	Н	M*	
Vertical	Vulnerability	Moderate	M	M	M	L*	
Ve	Vuln	Low	L	L	L	L*	
		High to Low	Н	Н	Н	M*	

^{*}In poorly productive aquifers where denitrification is not considered likely to occur, these categories should be the same as the karst and fissured aquifers categories.

Table A2

PA	THWAY	Y	Flow Regime (Horizontal pathway)				
SUS	CEPTI	BILITY FOR	Karst	Fissured	Intergranular	Poorly productive	
PHO	OSPHA	TES	aquifers	aquifers	aquifers	aquifers	
	Subsoil	Low permeability subsoil	L	L	L	L	
vay		Extreme	E	E	n/a *	Н	
pathv	ity	High	M	M	n/a *	M	
Vertical pathway	Vulnerability	Moderate	M	M	M	L	
) A	Vuln	Low	L	L	L	L	
		High to Low**	M	M	М	М	

^{*}Where sand/gravel aquifers are classed as 'extremely' vulnerable due to the presence of a shallow water table, the pathway susceptibility is considered to be moderate.

^{**}Where complete GSI vulnerability map is not available.

B. Impact Potential

The presence of urban and discontinuous urban fabric from CORINE and/or built up areas from the Ordnance Survey maps make up the pressure layer on the groundwater body.

IMPACT POTENTIAL		Nitrate Pathway Susceptibility (from Table A1)					
		Extreme	High	Moderate	Low		
Pressure nagnitude	Present	High	Moderate	Low	Negligible		
Pres	Absent	Negligible	Negligible	Negligible	Negligible		

IMPACT POTENTIAL		Phosphate Pathway Susceptibility (from Table A2)					
		Extreme	High	Moderate	Low		
essure	Present	High	Moderate	Low	Negligible		
Pressure magnitud	Absent	Negligible	Negligible	Negligible	Negligible		

C. Risk category based on predictive risk assessment

RISK CATEGORY		Proportion of assessment area with high and moderate impact potential						
		>40%	25-40%	15-25%	10-15%	5-10%	<5%	
ıtant	Phosphate	1b	1b	1b	2a	2a	2b	
Pollutant	Nitrate	1b	2a	2a	2a	2b	2b	

Predictive	Adjustments made using available impact data				
risk category	Data criteria	Adjusted risk category			
1b	Where significant impacts are known to occur by NPWS or RBD consultants	1a			
2a	Where significant impacts are known to occur by NPWS or RBD consultants	1b or 1a, depending on confidence in data and/or degree of impact.			

26. Ground Water Risk Assessment GWDTERA4

Summary details on pressures, receptors and WFD objective

RA Sheet	GWDTERA4	
Receptor type Groundwater Dependent Terrestrial Ecosystems		
Pressure type	Mining	
WFD objective	Chemical status	
Assessment area	Catchment area of GWDTE	

This risk assessment process is based largely on expert judgement. The matrices below are intended to assist the process; however, expert judgement and, where available, impact data can override the conclusions in the matrices.

A. Pathway susceptibility

The pathway susceptibility is assumed to depend on:

- Groundwater flow regime, as indicated by aquifer type.
- Length of pathway or distance from boundary of GWDTE. A maximum distance of 3km is likely to be sufficient for this risk assessment process.

Table A

		Flow Regime				
PATHWAY SUSC	Karst	Fissured	Intergranular	Poorly productive		
		aquifers	aquifers	aquifers	aquifers	
Distance from	<100 m	Е	Е	Н	Н	
GWDTE boundary	100-1000 m	Н	Н	M	M	
	1000-3000 m	M	M	M	L	
	>3000 m	L	L	L	L	

IMPACT POTENTIAL		Pathway Susceptibility (from Table A)					
		Extreme	High	Moderate	Low		
sure itude*	Present within 3000 m	High	High	High	Low		
Pressure magnitude	Absent	None	None	None	None		

^{*} Based on expert judgement of NPWS, GSI, EPA and RBD consultants.

C. Risk category based on predictive and impact risk assessments

Assessments made on the basis of predictions from pressure-susceptibility analysis		Adjustments to risk assessment category based on available impact data		
Impact potential (from Table B)	Risk category for whole groundwater body	Data type	Adjusted risk assessment category	
High	1b	NPWS or RBD consultants identify known impact with a high level of certainty	1a	
Low	2a	NPWS or RBD consultants identify impact with a low level of certainty	1b	
None	2b			

27. Ground Water Risk Assessment GWDTERA5

Summary details on pressures, receptors and WFD objective

RA Sheet	GWDTERA5
Receptor type	Groundwater Dependent Terrestrial Ecosystems
Pressure type	Quarries
WFD objective	Chemical status
Assessment area	Catchment area of GWDTE

This risk assessment process is based largely on expert judgement. The matrices below are intended to assist the process; however, expert judgement and, where available, impact data can override the conclusions in the matrices.

A. Pathway susceptibility

The pathway susceptibility is assumed to depend on:

- Groundwater flow regime, as indicated by aquifer type.
- Length of pathway or distance from boundary of GWDTE. A maximum distance of 3km is likely to be sufficient for this risk assessment process.

Table A

PATHWAY SUSCEPTIBILITY		Flow Regime					
		Karst	Fissured	Intergranular	Poorly productive		
		aquifers	aquifers	aquifers	aquifers		
Distance from	Distance from <100 m		Е	Н	Н		
GWDTE boundary	100-1000 m	Н	Н	M	M		
	1000-3000 m	M	M	M	L		
	>3000 m	L	L	L	L		

IMPACT POTENTIAL		Pathway Susceptibility (from Table A)				
		Extreme	High	Moderate	Low	
sure tude*	Present within 3000 m	High	High	High	Low	
Pressure magnitude	Absent	None	None	None	None	

^{*} Based on expert judgement of NPWS, GSI, EPA and RBD consultants.

C. Risk category based on predictive and impact risk assessments

Assessments made on the basis of predictions from pressure-susceptibility analysis		Adjustments to risk assessment category based on available impact data		
Impact potential (from Table B)	Risk category for whole groundwater body	Data type	Adjusted risk assessment category	
High	1b	NPWS or RBD consultants identify known impact with a high level of certainty	1a	
Low	2a	NPWS or RBD consultants identify impact with a low level of certainty	1b	
None	2b			

28. Ground Water Risk Assessment GWDTERA6

Summary details on pressures, receptors and WFD objective

RA Sheet	GWDTERA6
Receptor type	Groundwater Dependent Terrestrial Ecosystems
Pressure type	Landfills
WFD objective	Chemical status
Assessment area	Catchment area of GWDTE

This risk assessment process is based largely on expert judgement. The matrices below are intended to assist the process; however, expert judgement and, where available, impact data can override the conclusions in the matrices.

A. Pathway susceptibility

The pathway susceptibility is assumed to depend on:

- Groundwater flow regime, as indicated by aquifer type.
- Length of pathway or distance from boundary of GWDTE. A maximum distance of 3km is likely to be sufficient for this risk assessment process.

Table A

PATHWAY SUSCEPTIBILITY		Flow Regime					
		Karst	Fissured	Intergranular	Poorly productive		
		aquifers	aquifers	aquifers	aquifers		
Distance from	Distance from <100 m		Е	Н	Н		
GWDTE boundary	100-1000 m	Н	Н	M	M		
	1000-3000 m	M	M	M	L		
	>3000 m	L	L	L	L		

IMPACT POTENTIAL		Pathway Susceptibility (from Table A)				
		Extreme	High	Moderate	Low	
sure itude*	Present within 3000 m	High	High	High	Low	
Pressure magnitude	Absent	None	None	None	None	

^{*} Based on expert judgement of NPWS, EPA and RBD consultants.

C. Risk category based on predictive and impact risk assessments

Assessments made on the basis of predictions from pressure-susceptibility analysis		Adjustments to risk assessment category based on available impact data		
Impact potential	Risk category for	Data type	Adjusted risk	
(from Table B)	whole groundwater		assessment	
	body		category	
High	1b	NPWS or RBD consultants	1a	
		identify known impact with a		
		high level of certainty		
Low 2a		NPWS or RBD consultants	1b	
		identify impact with a low level		
		of certainty		
None	2b			

29. Ground Water Risk Assessment GWDTERA7

Summary details on pressures, receptors and WFD objective

RA Sheet	GWDTERA7
Receptor type	Groundwater Dependent Terrestrial Ecosystems
Pressure type	Oil industry infrastructure
WFD objective	Chemical status
Assessment area	Catchment area of GWDTE

This risk assessment process is based largely on expert judgement. The matrices below are intended to assist the process; however, expert judgement and, where available, impact data can override the conclusions in the matrices.

A. Pathway susceptibility

The pathway susceptibility is assumed to depend on:

- Groundwater flow regime, as indicated by aquifer type.
- Length of pathway or distance from boundary of GWDTE. A maximum distance of 3km is likely to be sufficient for this risk assessment process.

Table A

		Flow Regime					
PATHWAY SUSCEPTIBILITY		Karst	Fissured	Intergranular	Poorly productive		
		aquifers	aquifers	aquifers	aquifers		
Distance from	Distance from <100 m		Е	Н	Н		
GWDTE boundary	100-1000 m	Н	Н	M	M		
	1000-3000 m	M	M	M	L		
	>3000 m	L	L	L	L		

IMPACT POTENTIAL		Pathway Susceptibility (from Table A)				
		Extreme	High	Moderate	Low	
ssure itude*	Present within 3000 m	High	High	High	Low	
Pressure magnitude	Absent	None	None	None	None	

^{*} Based on expert judgement of NPWS, EPA and RBD consultants.

C. Risk category based on predictive and impact risk assessments

Assessments made on the basis of predictions from pressure-susceptibility analysis		Adjustments to risk assessment category based on available impact data		
Impact potential Risk category for (from Table B) whole groundwater body		Data type	Adjusted risk assessment category	
High	1b	NPWS or RBD consultants identify known impact with a high level of certainty	1a	
Low 2a		NPWS or RBD consultants identify impact with a low level of certainty	1b	
None	2b			

30. Ground Water Risk Assessment GWDTERA8

Summary details on pressures, receptors and WFD objective

RA Sheet	GWDTERA8
Receptor type	Groundwater Dependent Terrestrial Ecosystems
Pressure type	Contaminated land
WFD objective	Chemical status
Assessment area	Catchment area of GWDTE

This risk assessment process is based largely on expert judgement. The matrices below are intended to assist the process; however, expert judgement and, where available, impact data can override the conclusions in the matrices.

A. Pathway susceptibility

The pathway susceptibility is assumed to depend on:

- Groundwater flow regime, as indicated by aquifer type.
- Length of pathway or distance from boundary of GWDTE. A maximum distance of 3km is likely to be sufficient for this risk assessment process.

Table A

		Flow Regi	Flow Regime					
PATHWAY SUSC	Karst	Fissured	Intergranular	Poorly productive				
		aquifers	aquifers	aquifers	aquifers			
Distance from	<100 m	Е	Е	Н	Н			
GWDTE boundary	GWDTE boundary 100-1000 m		Н	M	M			
	1000-3000 m	M	M	M	L			
	>3000 m	L	L	L	L			

IMPACT POTENTIAL		Pathway Susceptibility (from Table A)				
		Extreme	High	Moderate	Low	
sure itude*	Present within 3000 m	High	High	High	Low	
Pressure magnitude	Absent	None	None	None	None	

^{*} Based on expert judgement of NPWS, EPA and RBD consultants.

C. Risk category based on predictive and impact risk assessments

Assessments made of predictions from pre analysis		Adjustments to risk assessment category based on available impact data		
Impact potential Risk category for (from Table B) whole groundwater body		Data type	Adjusted risk assessment category	
High	1b	NPWS or RBD consultants identify known impact with a high level of certainty	1a	
Low	2a	NPWS or RBD consultants identify impact with a low level of certainty	1b	
None	2b			

31. Ground Water Risk Assessment GWDTERA9

Summary details on pressures, receptors and WFD objective

RA Sheet	GWDTERA9
Receptor type	Groundwater Dependent Terrestrial Ecosystems
Pressure type	Urban Wastewater Discharges
WFD objective	Chemical status
Assessment area	Catchment area of GWDTE

This risk assessment process is based largely on expert judgement. The matrices below are intended to assist the process; however, expert judgement and, where available, impact data can override the conclusions in the matrices.

A. Pathway susceptibility

The pathway susceptibility is assumed to depend on:

- Groundwater flow regime, as indicated by aquifer type.
- Length of pathway or distance from boundary of GWDTE. A maximum distance of 3km is likely to be sufficient for this risk assessment process.

Table A

PATHWAY SUSCEPTIBILITY		Flow Regime					
		Karst	Fissured	Intergranular	Poorly productive		
		aquifers	aquifers	aquifers	aquifers		
Distance from	<100 m	Е	Е	Н	Н		
GWDTE boundary	GWDTE boundary 100-1000 m		Н	M	M		
	1000-3000 m	M	M	M	L		
	>3000 m	L	L	L	L		

		Pathway Susceptibility (from Table A)				
IMPA	ACT POTENTIAL	Extreme	High	Moderate	Low	
sure itude*	Present within 3000 m	High	High	High	Low	
Pressure magnitude	Absent	None	None	None	None	

^{*} Based on expert judgement of NPWS, EPA and RBD consultants.

C. Risk category based on predictive and impact risk assessments

Assessments made or predictions from pre- analysis	/0 0 -	Adjustments to risk assessment category based on available impact data		
Impact potential	Risk category for	Data type	Adjusted risk	
(from Table B)	whole groundwater		assessment	
	body		category	
High	1b	NPWS or RBD consultants	1a	
		identify known impact with a		
		high level of certainty		
Low	2a	NPWS or RBD consultants	1b	
		identify impact with a low level		
		of certainty		
None	2b			

32. Groundwater Risk Assessment DWPARA1

Summary details on pressures, receptors and WFD objective

RA Sheet	DWPARA1
Receptor type	Groundwater drinking water supply
Pressure type	Diffuse – mobile inorganics (NO ₃)
WFD objective	Drinking Water Protected Area
Assessment area	Surface extent of the groundwater body

A. Pathway susceptibility

			Flow Regime	Flow Regime (Horizontal pathway)				
	PATHWAY		Karst	Fissured	Intergranular	Poorly productive		
SUS	SUSCEPTIBILITY		aquifers	aquifers	aquifers	aquifers		
	& subsoil	'Wet' soil	L	L	L	L		
ay	Soil &	Low permeability subsoil	L	L	L	L		
pathw		Extreme	E	E	Н	M*		
Vertical pathway	llity	High	Н	Н	Н	M*		
Ve	Vulnerability	Moderate	M	M	M	L*		
Vul	Vul	Low	L	L	L	L		
		High to Low**	Н	Н	Н	М		

^{*}In poorly productive aquifers where denitrification is not considered likely to occur, these categories should be the same as the karst and fissured aquifers categories.

B. Impact potential

		Pathway Susceptibility (from Table A)					
IMPACT POTENTIAL*		Extreme	High	Moderate	Low		
Q.	>2.0 LU ha ⁻¹	High	High	Moderate	Low		
pn	or >33% tillage						
l jui	1.5-2.0 LU ha ⁻¹ or	Moderate	Moderate	Low	Low		
magnitude	18-33% tillage						
	1.0-1.5 LU ha ⁻¹ or	Low	Low	Low	Low		
ms	3-18% tillage						
Pressure	<1.0 LU ha ⁻¹ or	Negligible	Negligible	Negligible	Negligible		
Щ	<3% tillage						

^{*}Deriving Impact Potential

Individual Impact Potential maps are derived for the three types of pressures: cattle/sheep, pigs/poultry and tillage i.e. each grid cell within the maps will have three Impact Potential categories.

The *highest* Impact Potential category is taken for each cell, regardless of the type of pressure.

Within each GWB, the total area of 'H' plus 'M' Impact Potential is used to determine whether the GWB is 'at risk' (see C below).

^{**}For areas where complete vulnerability map is not available from GSI.

C. Risk category based on predictive risk assessment

	Proportion of assessment area with high and moderate impact potential					
	>40%*	25-40%	15-25%	10-15%	5-10%	<5%
RISK CATEGORY	1b	2a	2a	2a	2b	2b

^{*}The basis for this threshold is given in guidance document no. GW10 (GW WG, 2004).

Predictive risk	Adjustments made using available groundwater impact data				
category	Data criteria	Adjusted risk category			
All categories	Available representative monitoring data	1a			
	show an environmentally significant upward				
	trend in groundwater nitrate concentrations				
1b	Weighted mean NO ₃ -N >11.3 mg l ⁻¹	1a or 1b,			
		depending on level of			
		confidence in the			
		monitoring data			
2a		1b or 2a,			
	Weighted mean NO ₃ -N 8.5-11.3 mg l ⁻¹	depending on level of			
		confidence in the			
2b		monitoring data			
2b	Weighted mean NO ₃ -N 5.65-8.5 mg l ⁻¹	2a			
	Weighted mean NO ₃ -N <5.6 mg l ⁻¹	2b			

33. Groundwater Risk Assessment DWPARA2

Summary details on pressures, receptors and WFD objective

RA Sheet	DWPARA2
Receptor type	Groundwater drinking water supply
Pressure type	Diffuse – mobile organics (pesticides and PAHs)
WFD objective	Drinking Water Protected Area
Assessment area	Surface extent of the groundwater body

A. Pathway susceptibility

			Flow Regime (Horizontal pathway)				
	ΓHWAY		Karst	Fissured	Intergranular	Poorly productive	
SUS		BILITY	aquifers	aquifers	aquifers	aquifers	
	Subsoil	Low permeability subsoil*	L	L	L	L	
vay		Extreme	Е	Е	Н	Е	
Vertical pathway	ity	High	Н	Н	Н	Н	
ertical	Vulnerability	Moderate	M	M	M	L	
Ve	Vuln	Low	L	L	L	L	
		High to low**	Н	Н	Н	M	

^{*} In areas where GSI subsoil permeability map is unavailable, use vulnerability map alone.

B. Impact potential

	A)			
IMPACT POTENTIAL	Extreme	High	Moderate	Low
Present Present	High	Moderate	Low	Negligible
Apsent Apsent	Negligible	Negligible	Negligible	Negligible

^{*} Pressure magnitude

The pressures that are considered to pose a significant threat to groundwater are: urban and industrial areas, tillage, major roads and railways.

C. Risk category based on predictive risk assessment

	Proportion of assessment area with high and moderate impact potential					
	>40%	25-40%	15-25%	10-15%	5-10%	<5%
RISK CATEGORY	1b	1b	1b	2a	2b	2b

^{**} For areas where complete vulnerability map is not available from GSI.

Predictive risk	Adjustments made using available groundwater impact data				
category (from	Data criteria**	Adjusted risk category			
Table C)					
1b	One or more groundwater sampling stations have EITHER: Any individual selected trace organic >0.05 µg/l in more than 25% of groundwater samples, OR Total trace organic >0.01 µg/l in more than 2 samples, OR Maximum trace organic >100 µg/l in any one sample.	la or 1b, depending on level of confidence in the monitoring data			
2a	One or more groundwater sampling stations have EITHER: Any individual selected trace organic >0.05µg/l in more than 25% of groundwater samples, OR Total trace organic >0.01µg/l in more than 2 samples, OR Maximum total trace organic >0.1 µg/l in any one sample.	1b			
2b	One or more groundwater sampling stations have EITHER: Any individual selected trace organic >0.05µg/l in more than 25% of groundwater samples, OR Total trace organic >0.01µg/l in more than 2 samples, OR Maximum total trace organic >0.1 µg/l in any one sample.	2a or 1b, depending on level of confidence in the monitoring data			

^{**} copied from SEPA approach.

34. Membership of Groundwater Working Group

Organisation Representative(s)

Geological Survey of Ireland (GSI) Donal Daly (Convenor)

Geoff Wright
Vincent Fitzsimons
Coran Kelly

Taly Hunter Williams

Monica Lee

Camp Dresser McKee (CDM)

Henning Moe

Compass Informatics Ltd. Paul Mills

Department of the Environment, Heritage and Local Pat Duggan

Government (DEHLG)

Jim Ryan (NPWS)

Aine O'Connor (NPWS)

Environment and Heritage Service/ Geological Survey of Peter McConvey

Northern Ireland (EHS/GSNI)

Trinity College, Dublin (TCD)

Environmental Protection Agency (EPA) Margaret Keegan

Micheal McCarthaigh

RPS-Kirk McClure Morton (RPS-KMM) Grace Glasgow

Kieran Fay

O'Callaghan Moran (OCM) Sean Moran

Gerry Baker

O'Neill Groundwater Engineering (OGE) Shane O'Neill Shannon Pilot River Basin – EPA/TCD Research Fellow Garrett Kilroy

Southeastern River Basin District (SERBD) Colin Byrne
Teagasc Karl Richards

Paul Johnston Catherine Coxon

35. References

Grennan, E. (1996) *Small Scale Study of former Mine Sites in Ireland*. Compiled by Sligo Institute of Technology and presented to the EPA.

McGarrigle, M. et al. (2002) Water quality in Ireland 1998-2000, EPA, Wexford.

NERC (1998) Groundwater – our hidden asset. UK Groundwater Forum. British Geological Survey.

SEPA Groundwater Task Group (2004) *Environmental characterisation of Scotland's water environment*. Supporting information on groundwaters. Scottish Environmental Protection Agency. 87pp.

SEPA (2002) The future of Scotland's waters. Guiding principles on the technical requirements of the Water Framework Directive. Scottish Environmental Protection Agency. 80pp.

Working Group on Groundwater (2003) Guidance Document GW4: *Guidance on Pressures and Impacts Assessment Methodology*, 40 pp.

Working Group on Groundwater (2004) Guidance Document GW5: Guidance on the Assessment of the Impact of Groundwater Abstractions, 23 pp.

Working Group on Groundwater (2004) Guidance Document GW10: Verifying the Predictive Risk Assessment Methodology for Mobile Diffuse Inorganic Pollutants (NO₃). Geological Survey of Ireland for Working Group on Groundwater, 18 pp.