

WFD Pressures and Impacts Assessment Methodology

GUIDANCE ON PRESSURES AND IMPACTS METHODOLOGY

Paper by the Working Group on Groundwater and Working Group on Characterisation and Reporting

Guidance document no. GW4

This is a gu	This is a guidance paper on the application of a Pressures and Impacts Methodology. It documents the principles to be					
adopted by F	adopted by River Basin Districts and authorities responsible for implementing the Water Framework Directive in Ireland.					
	REVISION CONTROL TABLE					
Status	Approved by National Technical	WFD	Relevant EU Reporting Sheets	Date		
	Co-ordination Group	Requirement				
Final	August 2003	Pressures and	SWPI 1, 2, 3, 4, 5, 6, 7, 8 & 9	8 August 2003		
	-	Impacts	GWPI 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11	-		

Contents

SU	MMARY AND GENERAL PRINCIPLES	I-II
FIG	URE 1: SUMMARY OF RISK ASSESSMENT APPROACH	<u> </u>
TAE	BLE 1: SUMMARY OF MAIN STAGES IN PRESSURE AND IMPACT ASSESSMENT	II
1.	INTRODUCTION	1
1	1 BACKGROUND	1
1	2 RECORD OF SUBMISSIONS	2
2.	OVERALL APPROACH	3
3.	SCREENING AND MAPPING FOR PRESSURES	5
3	1 INTRODUCTION	5
3	2 PRESSURE DATASETS IDENTIFIED AS NECESSARY FOR SCREENING PROCESS	6
3	3 NEXT STEPS	6
4.	RELEVANT CHARACTERISTICS OF OVERGROUND AND UNDERGROUND	
PA	ГНWАҮЅ	9
4	1 THE 'PATHWAY'	9
4	2 PATHWAY SUSCEPTIBILITY	9
	4.2.1 Use of Susceptibility Concept in Risk Assessment	9
	4.2.2 Example 1 Pathway susceptibility of a Surface Water Body to Phosphorus	10
	4.2.3 Example 2 Groundwater Bodies and General Susceptibility	12
	4.2.4 Example 3: Susceptibility of Groundwater for Nitrate	12
5.	RELEVANT CHARACTERISTICS OF RECEPTOR	13
6.	COMBINING PRESSURES, SUSCEPTIBILITY AND SENSITIVITY	14
6	1 EXAMPLE 1 IMPACT OF GROUNDWATER ABSTRACTIONS.	14
6	2 EXAMPLE 2 BROAD APPROACH FOR LINKING PRESSURES WITH SUSCEPTIBILITY	15
6	3 EXAMPLE 3 COMBINING PRESSURES, SUSCEPTIBILITY AND SENSITIVITY OF LAKES	ТО
Т	OTAL P	15
6	4 EXAMPLE 4 COMBINING PRESSURES, SUSCEPTIBILITY AND SENSITIVITY OF LAKES	TO ACID
Π	VPUTS	16
7.	MONITORING DATA AND INFORMATION ON KNOWN IMPACTS	
7	1 INTRODUCTION	
7	2 THRESHOLDS FOR ECOLOGICAL STATUS BOUNDARIES IN SURFACE WATERS	
7	3 THRESHOLDS FOR CHEMICAL STATUS IN GROUNDWATERS	
8.	MAIN STAGES IN PRESSURES AND IMPACTS ASSESSMENT	
9.	MEMBERS OF THE WORKING GROUP ON GROUNDWATER	
10.	REFERENCES	
11.	APPENDIX A – RISK CRITERIA TABLES	22
12.	APPENDIX B - DRAFT ECOLOGICAL STATUS BOUNDARIES FOR LAKES	

Figures

FIGURE 1 AN ILLUSTRATION OF THE DPSIR ANALYTICAL FRAMEWORK (COPIED FROM IMPRESS	
GUIDANCE)	3
FIGURE 2 SUMMARY OF RISK ASSESSMENT APPROACH	4
FIGURE 3 SCREENING PROCESS TO IDENTIFY HIGH RELEVANCE PRESSURES AND RISK CRITERIA	5
FIGURE 4 DIAGRAMMATIC REPRESENTATION OF THE INTEGRATION ALL THREE ELEMENTS OF RISK	
ASSESSMENT	15
FIGURE 5 PROPOSED METHODOLOGY FOR ASSESSING GROUNDWATER QUALITY (FROM KEEGAN,	
2003)	19

Tables

TABLE 1	SCREENING FOR RELEVANT PRESSURES FOR WATER BODIES IN EACH WATER CATEGORY	. 7
TABLE 2	EXAMPLES (DRAFT) OF RELEVANT CHARACTERISTICS OF THE PATHWAY AND THEIR	
IMPI	LICATION	10
TABLE 3	RELATIONSHIP BETWEEN PHYSICAL SETTING AND PATHWAY SUSCEPTIBILITY OF SURFACE	
WAT	FER BODIES FOR P. MOBILITY BY SURFACE ROUTES.	11
TABLE 4	RELATIONSHIP BETWEEN PHYSICAL SETTING AND SUSCEPTIBILITY FOR P. MOBILITY BY	
UND	DERGROUND ROUTES.	11
TABLE 5	RELATIONSHIP BETWEEN PHYSICAL SETTING AND POTENTIAL PHOSPHORUS LOSS.	11
TABLE 6	GENERAL PATHWAY SUSCEPTIBILITY OF GROUNDWATER BODIES FOR PRESSURES	12
TABLE 7	GENERAL PATHWAY SUSCEPTIBILITY OF GROUNDWATER BODIES FOR NITRATE	12
TABLE 8	EXAMPLES OF ATTRIBUTES INFLUENCING THE SENSITIVITY OF RECEPTORS	13
TABLE 9	RELATIONSHIP BETWEEN THE RISK TO A GROUNDWATER BODY AND GROUNDWATER	
ABS	TRACTION.	14
TABLE 10	0 RELATIONSHIP BETWEEN THE RISK TO A SENSITIVE HABITAT AND GROUNDWATER	
ABS	TRACTION.	14
TABLE 1	1 ILLUSTRATION OF RISK CLASSIFICATION	15
TABLE 12	2 COMBINING PRESSURE AND PATHWAY SUSCEPTIBILITY FOR LAKES WITH RESPECT TO	
РНО	SPHORUS	16
TABLE 13	3 FINAL RISK ASSESSMENT MATRIX COMBINING PRESSURE, PATHWAY SUSCEPTIBILITY AN	D
THE	SENSITIVITY OF THE RECEPTOR (IN THIS CASE LAKE TROPHIC STATUS)	16
TABLE 14	4 PATHWAY SUSCEPTIBILITY FOR ACID DEPOSITION.	16
TABLE 1:	5 COMBINING PRESSURE AND PATHWAY SUSCEPTIBILITY FOR ACID DEPOSITION IN LAKES	16
TABLE 16	6 FINAL RISK ASSESSMENT MATRIX COMBINING PRESSURE, PATHWAY SUSCEPTIBILITY AN	D
THE	SENSITIVITY OF THE RECEPTOR (IN THIS CASE LAKE ALKALINITY)	17
TABLE 1	7 SUMMARY OF MAIN STAGES IN PRESSURE AND IMPACT ASSESSMENT.	20
TABLE A	.1 SOURCE-PATHWAY-RECEPTOR CRITERIA FOR HIGH RELEVANCE PRESSURES IN BODIES O	F
GRO	DUNDWATER	23
TABLE A	.2 SOURCE-PATHWAY-RECEPTOR CRITERIA FOR HIGH RELEVANCE PRESSURES IN RIVER	
WAT	TER BODIES	26
TABLE A	3 SOURCE-PATHWAY-RECEPTOR CRITERIA FOR HIGH RELEVANCE PRESSURES IN LAKE	
WAT	TER BODIES	31
TABLE B	.1 INTERCALIBRATION TYPES FOR IRELAND	38
TABLE B	.2 LOWLAND, SHALLOW CALCAREOUS LAKES (SMALL AND LARGE) (L-A1 AND L-A2)	39
TABLE B	.3 Lowland, Shallow Siliceous (Moderate Alkalinity) Lakes > 0.5 km2 (L-N1).	39
TABLE B	.4 Lowland, Shallow Siliceous (Low Alkalinity) Lakes > 0.5 km ² (L-N2 and L-	
A3)		40

Water Framework Directive Pressures and Impacts Assessment Methodology

Summary and General Principles

- This Methodology is influenced by and follows the principles outlined in a UKTAG Drafting Group paper.
- It proposes a framework that should be applied to **all** water bodies. This is summarised in Figure 1.

Figure 1 Summary of risk assessment approach

- The conventional 'source-pathway-receptor' model is used as the framework for applying the risk concept.
- The Methodology is largely a screening process, using matrices and layers in a GIS which are based on available data.
- Monitoring data exist to varying degrees of adequacy. In this report, monitoring and monitoring data are placed in a broad risk assessment context, which requires analysis and understanding of the relationships and linkages between pressures, environmental pathways and impacts. Where the data are adequate, they are a critical component of the Methodology; firstly, they are the major factor in determining the risk category of the water body; and secondly, they can provide threshold values to validate pressure and impact assessments.
- The stages in the process are summarised in Table 1.

Step ¹	Description
1	Delineate and undertake evaluation and description of water bodies
2	Develop a 'conceptual understanding/model' of the river basin as a 3-dimensional entity, where emphasis is placed on the interconnection and interdependencies between the various components of the water cycle.
3	Identify and delineate water bodies to be assessed (surface water, lakes, transitional, coastal and groundwater). These water bodies may subsequently be sub-divided on completion of the pressure and impact analysis.
4	Review existing monitoring data to determine whether there are appropriate indicators to determine whether the water body is 'at risk' or not. Draw conclusions on the value and relevance of the data, and highlight gaps.
5	Obtain and incorporate relevant GIS layers on the physical characteristics of the RBD (e.g. soil, aquifers, etc.)
6	Develop 'susceptibility' matrices for each water body type for the main types of pollutants
7	Map and evaluate known impacts, e.g. on hydromorphology.
8	Obtain relevant available information on pressures and activities that are likely to pose a risk to the status of a water body. Install info. in RBD GIS.
9	Group all pollutants into 'pollutant types'. Develop general threshold values for particular pressure magnitudes and 'pollutant types', in the form of matrices.
10	Evaluate and report on 'sensitivity' of receptors, particularly ecosystems.
11	Develop threshold values for chemical and ecological parameters that indicate the 'risk' categories.
12	Combine relevant pressures, susceptibility and sensitivity in the form of matrices for both water bodies and ecosystems.
13	Apply matrices to RBD GIS.
14	Use available monitoring data to refine the threshold values and the 'risk' conclusions. If necessary, re-evaluate and amend matrices developed under previous steps.
15	For each water body, conclude whether 'at risk', 'not at risk' or 'potentially at risk'.
16	Undertake 'further characterisation' on bodies 'at risk' and 'potentially at risk'.

 Table 1
 Summary of main stages in pressure and impact assessment

¹ Some of these steps will be undertaken simultaneously and can be in a different order.

Water Framework Directive Pressures and Impacts Assessment Methodology

1. Introduction

1.1 Background

This report is based on the principles and ideas in draft UKTAG papers. The report was drafted initially by Donal Daly and Garrett Kilroy. The approach was agreed at a meeting of the Working Group on Characterisation and Reporting on 6/6/2003. The members of the GW WG are listed in Section 9. It was decided at the meeting that the report should be developed by a Working Group subcommittee or Drafting Group, which would meet in the GSI on 14th July, prior to reporting to the WFD Co-ordination Group on 17th July.

The nominated Drafting Group members are:

Mr Donal Daly, Geological Survey of Ireland Ms Grace Glasgow, SERBD (KMM) Dr Garrett Kilroy, Shannon Pilot River Basin Mr Martin McGarrigle, Environmental Protection Agency Dr Jim Bowman, Environmental Protection Agency Mr Francis O'Beirn, Marine Institute Mr Thomas Quinlivan, Department of Agriculture and Food Mr Paul Mills, Compass Informatics

The report was considered at the Groundwater Working Group meeting on 10th June. The amendments recommended at that meeting are included here. Subsequent to the meeting of the Working Group on Characterisation and Reporting on 6/6/2003, Grace Glasgow and Garrett Kilroy agreed to develop the methodology further. This process involved meeting with each of the other water quality experts in advance of the meeting at GSI on 14th July. Meetings were held with Jim Bowman on 3rd July, Francis O'Beirne on the 4th of July and Martin McGarrigle on the 10th July. Output from these meetings is presented in Section 3 of this document. In summary, these meetings provided the first screening for relevant pressures for each of the water categories. Also provided in this document in Appendix A are risk assessment criteria for the most highly relevant pressures.

The risk methodology was presented to the drafting group on 14th July and action points for further development of the document agreed. These action points are largely incorporated into this revision.

The main outstanding tasks for further development of this document were (they have now been addressed):

- 1. The detailed review of the Risk Criteria Tables by relevant experts
- 2. The grouping of pollutants into 'pollutant types'
- 3. Categorising the magnitude of pressures
- 4. Development of thresholds for particular pressures and 'pollutant types' in the form of matrices.

1.2 Record of Submissions

Several submissions have been given to drafting group members on previous drafts of this document. In order to keep track of the development of this document it was agreed at the July 14th meeting of the drafting group to insert a section detailing submissions on this document. The table below lists the status of these submissions and the extent to which recommendations are planned for inclusion by the drafting group.

Submitted By	Date	Format	Content	Actions by drafting group
Jim Bowman	5-6-03	Word	Suggested criteria for lakes	Superseded by 16-7-03
		Doc		document
	16-7-03	Word	Criteria for lakes to be used for the	Incorporated into Chap. 7
		Doc	intercalibration exercise	
Conor	17-6-03	email	1. Forecasting changes to 2015	1. For later draft
Cleneghan			2. Addressing cumulative effects	2. For later draft
			3. Amalgamating water bodies & use of	3. For later draft
			analogous water bodies	
			4. Assessment of uncertainty	4. For later draft
Martin	12-6-03	email	1. High quality sites should be defacto at	1. Yes – receptor could be
McGarrigle			risk	weighted to reflect status
			2. Use all available long-term data	2. Yes
			3. First order streams should not be	3. Wait for GIS stage
			neglected in the process	
			4. ERTDI agricultural eutrophication	4. Will be considered when
			project (LS2) should be used	available
Thomas	1-7-03	email	Pressure thresholds for agriculture, e.g.	Wait for threshold
Quinlivan			use of kg organic N / ha	development stage
Donal Daly	8-8-03	email	How do we take account for relative	Thresholds will be required:
			areas of a water body with differing	e.g. areas with >10% conifer
			degrees of pressures and pathway	may be at risk
			susceptibility?	

2. Overall Approach

The main objective of pressures and impacts assessment is to decide whether water bodies are 'at risk' of failing to meet the Directive's environmental objectives.

A formal 'risk assessment' approach is used. The risk concept in essence is basic and simple:

The risk depends on all three elements. For example:

- If there are no pressures, there is no risk to receptors, even if they are 'susceptible' and/or 'sensitive'.
- If there is a significant thickness of low permeability subsoil (i.e. the vulnerability is low), even if there are significant pressures, the 'susceptibility' of groundwater is low and therefore the risk to groundwater is low.
- If the receptor is particularly resilient (i.e. is not sensitive), such as calcareous lakes with a buffering capacity to acidification, then the risk is diminished.

The risk assessment approach is combined with the 'Drivers-Pressures-State-Impact-Response' model shown in Figure 1.

Figure 1 An illustration of the DPSIR analytical framework (copied from IMPRESS Guidance)

The proposed overall approach for pressure and impact assessment is outlined in Figure 2. It is recommended that the same approach should be applied to **all** "water categories" (i.e. groundwater, rivers, lakes, transitional & coastal) in order to maintain consistency and linkages. This is in line with the IMPRESS guidance, which emphasises having a good 'conceptual understanding' of the various

relevant aspects of water (flow, chemistry, ecology), and advocates 'integration' as a key concept underlying the WFD.

Matrices are used to assist in the assessment of whether a water body is at risk. Methods such as exceedances of numerical threshold values are amenable to representation by a matrix.

As the initial assessment of pressures and impacts needs to be completed by the end of 2004, it should be mainly a screening exercise, using layers in the RBD GIS. The proposals outlined in this report are based on this assumption.

Figure 2 Summary of risk assessment approach

3. Screening and Mapping for Pressures

3.1 Introduction

Screening for pressures involves identifying, collating and mapping activities or potential pressures in the RBD GIS. Useful qualifiers in considering pressures are as follows:

- 1. Spatial nature
 - Point
 - Diffuse
- 2. Temporal nature
 - Continuous
 - Episodic
 - Periodic
- 3. Control
 - Regulated at source
 - Not regulated at source

As a first step in the screening process meetings were held with water category experts Jim Bowman (lakes), Francis O'Beirn (coastal/transitional) and Martin McGarrigle (rivers) as outlined in the introduction. The purpose of these meetings was to identify high relevance pressures for each of the water categories. The process carried out is summarised in the schematic in Figure 3. The first step was to go back to the Directive itself and identify the main pressures required for assessment. This 'incomplete' pressure list was derived from the IMPRESS guidance document (Table 4.1).

Figure 3 Screening process to identify high relevance pressures and risk criteria

Pressures which were identified with a relevance score of 4 or 5, were then examined by Grace Glasgow and Garrett Kilroy to identify the type and magnitude of the pressure and criteria for the pathway and receptor. Output from this assessment is presented in Appendix A. These tables were reviewed by the Characterisation and Reporting Working Group.

3.2 Pressure datasets identified as necessary for screening process

During this screening process, the following datasets / information were identified as necessary to populate the RBD GIS in order to address all priority pressures.

Required dataset which are available	Required datasets which are unlikely to be available
	Use of surrogates may be required
Landuce	Destinide usage?
Land use	Plant protection product usage?
L'and use change	Plant protection product usage?
Livestock Density	Slurry storage facility deficits?
Chemical fertilizer loadings	Manure depot size?
Soil P levels	Cattle mart turnover?
Enterprise distribution (e.g. arable %age)	Silage production practices?
WWTP PE & level of treatment	Storm water overflow volume of spillage?
Water treatment plant volume	Septic tank population served?
Industrial site chemical usage	Landfill & dump leachate composition?
Mining practices	Extent of physical works (dredging, engineering, trawling,
Peat extraction practices	Channel works etc)?
Aquaculture enterprise size	Extent of recreational activities?
Abstraction total volume	Shipping activities?
Exotic species presence	Forestry practices – felled, fertilized, drained areas?
Boat maintenance area	Sewage sludge spreadland inventories?
Sheep dip practices (REPS uptake)	
FIPS & Coillte databases	
Rainfall intensity	

3.3 Next Steps

- 1. The relevant pollutants need to be grouped into 'pollutant types' based on similarities of mobility and toxicity. This will reduce the number of required risk matrices and simplify the RBD GIS.
- 2. The pressures that produce these pollutant types need to be categorised into pressure magnitudes. For some pressures this may take the form of percentages of a particular land cover type. For example, acidification pressure may be categorised into percentages of conifer plantation cover, i.e. High (>10%), Moderate (<10%), Low (0%) as set out in Table 15 of Chapter 6. In other cases, application ranges (e.g. kg N / ha) may be more appropriate.</p>
- 3. Appropriate threshold levels need to be developed for identified pressures to determine whether the magnitude of these pressure put a given water body at risk. Some Irish examples are given in Section 8. The UK TAG documents provide many examples, as does material produced by EA regarding coastal/transitional waters. The appropriateness of these thresholds was assessed by the Characterisation and Reporting Working Group and other expert groups. The identified criteria and associated thresholds may then be integrated into the RBD GIS for risk analysis.

PRESSURE	SECTOR	SECTOR ACTIVITY	Ground	River	Lake	Trans'l	Coastal
CATEGORY			water	NIVCI	Lakt	11ans 1	Coastai
DIFFUSE	urban drainage	industrial/commercial estates	2	4	1	4	2
SOURCE	(including runoff)	urban areas (including sewer networks)	2	5	2	4	2
		Airports	4	4	4	N/A	N/A
		Roads	2	2	1	2	1
		railway tracks and facilities	1	1?	1	N/A	N/A
		Harbours	N/A	N/A	1	4	2-3
	agriculture diffuse	Arable, improved grassland mixed farming	3-4	2-4	4	4	3
		crops with intensive nutrient or					
		pesticide usage or long bare soil	4	4	4	4	
		periods (e.g. corn, potato, sugar beets,	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·	·	
		vine, hops, fruits, vegetables)					
		over grazing – leading to erosion	1	4	4	4	4
		horticulture, including greenhouses	I	4	4	4	2
		application of agricultural waste to land	3-4	5	5	4	4-5
	forestry	coniferous plantations	2	4	4	2	1
		planting/ground preparation	2	5	4	2	1
		Felling	2	4	3	2	1
		pesticide & herbicide applications	3-4	3		2	1
		fertilizer applications	3	1-4	1-4	2	1
		Drainage	2	4	3	2	
	1 1.00	oil pollution	1	l	1	N/A	N/A
	other diffuse	sewage sludge recycling to land	2-4	5	1 - 3	3	2
		atmospheric deposition	N/A	1-4	1-4	1	l
		waters	N/A	N/A	1	4	4-5
		shipping/navigation	N/A	N/A	N/A	4	4
POINT SOURCE	waste water	municipal waste water primarily domestic	1	5	5	5	4
		municipal waste water with a major industrial component	1	5	5	5	4
		storm water and emergency overflows	1	5	5	4	4
		private waste water primarily domestic (septic tanks)	3-4	4	4	4	4-5
		private waste water with a major industrial component (IPC2)	3	5		2	?
		Harbours	N/A	N/A	2 - 3	22	1
		*Water supply	14/14	14/14	2 5	2:	1
	industry	gas/petrol	4-5	3	3	2	1
	(includes	Chemicals, incl. Pharmaceutical	4-5	3	3	4-5	2
	storage)	nulsures (organic and morganic)	4	1	3	1	1
	storage)	woollens/textiles	4		3	12	1
		iron and steel (includes galvanising)	3	2	3	1?	1
		food processing (incl. Agric	4	4	3	3-4	1
		industries)	2	4	2		1
		brewing/distilling	3	4	3	?	I
		solvent users	4	3	3 – 4	4-5	4
		wood yards/timber treatment	4	4	3 - 4	4	4
		Construction	3	3	3	3	2
		power generation	1	3	2	3	2
		leather tanning (incl. Fell Mongering)	3	2	N/A	?	?
		Shipyards	N/A	N/A	N/A	4-5	3
		boat builders	N/A	N/A	2	N/A	2
	Mining	other manufacturing processes	3	3	3	3	2
	Mining	active deep mine	24	5	N/A	1	1
		active open cast coal site/quarry	3-4	4	N/A	1	2
		gas and on exploration and production	3-4 2	4	1N/A 2	1	1
		peurentiaetton	2	-	5	1	1

Table 1 Screening for relevant pressures for water bodies in each water category

PRESSURE CATEGORY	SECTOR	SECTOR ACTIVITY	Ground water	River	Lake	Trans'l	Coastal
POINT		abandoned coal (and other) mines, spoil heaps (bings).tailings dams	5		3	1-4	1
(cont'd)	contaminated	old landfill sites	5	5	5	4	4
	land	urban industrial site (organic and inorganic)	5	4	N/A	?	?
		rural sites (includes illegal dumps)	5	4	5	2	2
		military sites	1	1	1	1	1
	agriculture	Shurry	5	5	5	2	4
	point	silage and other feeds	4	4	5	2	4
	I	sheep dip use	4	3	5	2	4
		manure depots	4	4	3	2	4
		farm chemicals	4	4	5	2	4
		agricultural fuel oils	3	3	1	2	2
	waste	operating landfill site	4	4	3	2	2
	management	operating waste transfer stations, scrap yards etc.	4	3	3	3	2
	aquaculture	inland fish farming / watercress / aquaculture	N/A	5	3 - 4	1	4
		shellfish	N/A			3	4
		marine cage fish farming	N/A	N/A	N/A	2	4
ABSTRACT- ION	reduction in flow	abstractions for agriculture, potable supply, industry, fish farms, hydro- energy, quarries/open cast coal sites, navigation (e.g. supplying canals)	4-5	2-5	5	2	1
ARTIFICIAL RECHARGE	groundwater management	groundwater recharge	?	N/A	N/A	N/A	N/A
MORPHO-	lake	hydroelectric dams	1	3	2	N/A	N/A
LOGICAL	management	water supply reservoirs	1	3	2	N/A	N/A
	C	flood defence dams	1	3	N/A	N/A	N/A
		Diversions	1	3	N/A	N/A	N/A
	river	physical alteration of channel	1	4	N/A	N/A	N/A
	management	engineering activities	1	4	N/A	N/A	N/A
	-	agricultural enhancement	1	3	N/A	N/A	N/A
		fisheries enhancement	N/A	2	N/A	N/A	N/A
		land infrastructure (road/bridge construction)	1	4	N/A	N/A	N/A
		Dredging	1	5	N/A	N/A	N/A
	transitional and	estuarine/coastal dredging	N/A	N/A	N/A	4	2
	coastal management	marine constructions, shipyards and harbours	N/A	N/A	N/A	4	1-2
	_	land reclamation and polders	1	N/A	N/A	4	1
		coastal sand suppletion	N/A	N/A	N/A	1	N/A
		new category fishing activities (physical effects (trawling) and biological effect).	N/A	N/A	N/A	4	4-5
	other	barriers & weirs	1	1	2	3-4	N/A
OTHER		litter/fly tipping	1	4	1	3	3
ANTHRO- POGENIC		sludge disposal to sea (including historic)	N/A	N/A	N/A	N/A	N/A
		exploitation/removal of other animals/plant	N/A	1-4	1	4	4
		Recreation	N/A	3-4	3 – 4	1	1
		commercial Fishing	N/A	1	3	4-5	4-5
		angling	N/A	1		2	2
		introduced species	N/A	3	4	4	4
		introduced diseases	?	3	3	4	4
		climate change	3	3	3	2	4
		land drainage	2	2	2	2	3
	1	Tanu use change	1	1	1	1	1

Table 1 (cont'd) Screening for relevant pressures for water bodies in each water category

Preliminary scoring: 1 = minimum relevance, 5 = maximum relevance, N/A = Not Applicable

Note: Degree of relevance based on known history of occurrences in Ireland (supported by monitoring information) or on expert judgement in the absence of monitoring information for water bodies where the pressure occurs.

* Denotes new pressure, which needs to be reviewed by water category experts and assigned screening score.

4. Relevant Characteristics of Overground and Underground Pathways

4.1 The 'Pathway'

Understanding and taking account of the pathway is critical to:

- Providing the link between pressures and impacts;
- Predicting the likelihood of an impact, particularly when the monitoring data are inadequate;
- Describing 'why' there could be/has been an impact;
- Enabling monitoring data to be understood and assessed;
- Enabling monitoring networks to be designed and implemented;
- Enabling 'responses' to the risk or appropriate 'measures' to be derived and implemented

There is a danger that the critical role of the characteristics of the 'environmental pathway' may be forgotten about as emphasis may tend to be put on 1) pressures and 2) monitoring data, in spite of the fact that the main reason for the conceptualisation and description element of the WFD work is to provide the necessary understanding of the functioning of water within each catchment. Encouraging greater consideration of the 'pathway' elements discourages important factors from being missed, such as: the possible role of the underground pathway in both attenuating pollutants and in transmitting pollutants to rivers; or the role of soils information/maps in helping understand runoff and predict impacts. It encourages a 3-D conceptual understanding of water in an RBD, linkages between the various components of the hydrological system, linkages between the 'cause' of problems and their 'effects', and a holistic approach to water management.

For certain pressures, such as direct discharge of effluent from sewage treatment works, the physical characteristics of the environmental pathway are not usually an issue, as the effluent is piped directly into rivers, lakes or the sea.

The 'pathway' can include the link between water categories, e.g. transitional to coastal waters.

Table 2 takes the main components of the environmental pathway and summarises their implications for surface waters and groundwater.

4.2 Pathway Susceptibility

4.2.1 Use of Susceptibility Concept in Risk Assessment

The term 'susceptibility' of a water body to pressure is used in both the IMPRESS Guidance and the UKTAG Methodology to represent the likelihood of impact. 'Susceptibility' is defined in this report as a property of the pathway.

The characteristics of the 'environmental pathway' enable the 'susceptibility' of a pathway to a particular receptor² to be assessed, ranked and measured (to a certain degree at least).

It is suggested that the 'pathway susceptibility' of the main receptors to the main types of pollutants should be formulated in the form of matrices, keeping in mind the need to maintain the link with

² Please note that while at first glance, it may look as if 'susceptibility' is a property of the receptor (e.g. by saying *susceptibility of Pollardstown Fen*), in fact it is <u>only</u> defining the pathway to the receptor (e.g. to Pollardstown Fen). It is essential to see 'susceptibility' as a measure only of the characteristics of the pathway to a particular receptor. The 'sensitivity' of Pollardstown Fen is a separate issue. One of the difficulties is that the three terms 'vulnerability', susceptibility' and 'sensitivity' can be used interchangeably. However, 'vulnerability' has been given a specific meaning in groundwater protection schemes and will be a layer in the RBD GIS; we suggest using the term only in this way. The term 'susceptibility' has a broader meaning in UKTAG documents; we suggest using our definition for now – clearer language may be an outcome of future discussions.

layers in a GIS. While this may seem a daunting task, in practice it may only be necessary to consider a small number of representative pollutants. Three **draft** examples are given below to illustrate the process and provide a basis for further discussion.

Five categories of susceptibility are suggested: extremely high (E), high (H), moderate (M), low (L) and very low (VL). Generally, the categories of concern will be extremely high and high.

Common on 4 ³	Eastan	Delevent ekenesteristie	Inceliestice	December of wal
Component	Factor	Relevant characteristic	Implication	Receptor at risk
Soil	wet' (gley)	Low permeability	Rapid runoff (sheet flow)	SW ⁺ (via surface runoff)
	'dry' (Brown Earth, etc)	Moderate/high permeability	Leaching of pollutants, e.g. NO_3 and P	GW [*] & SW (via gw)
	Si / Ca soils	Acid buffering capacity	Poor buffering of acidic inputs	SW
	'organic'	Low permeability and high CEC	Acidic, high runoff and attenuation	SW
Subsoil	Sand/gravel	High permeability	Leaching of pollutants, e.g.	GW and SW (via gw)
	CLAY (clayey till)	Low permeability	NO ₃ Rapid rupoff	SW (via surface runoff)
	CLAT (clayey un)	Low permeability	Rapid fution	
	Depth to bedrock	Bedrock at or near (<1 m) surface	a) No protection of gw b) No acceptance of rainfall in low transmissivity rock areas, with rejected recharge & rapid runoff	a) GW and SW (via gw) b) SW
		>3 m low permeability subsoil	Rapid runoff: gw protected	
Bedrock	Type of bedrock	Calcareous or siliceous	Influence on typology of rivers and lakes and buffering capacity	SW
Groundwater Vulnerability	'Extreme' and 'high'	High transit time	High leaching potential	GW and SW (via gw)
	'Low'	Low transit time and recharge; high attenuation	Minimal leaching potential & rapid runoff	SW
Aquifer flow regime	Pu, Pl and Ll	Low transmissivity; short underground flowpaths	High surface drainage	SW
	Rk, Rf, Lm	High/moderate transmissivity; long underground flowpaths	Low surface drainage; GW can act as pathway to SW GW an imp. Resource	GW and SW (via gw)
	Karst aquifers (Rk)	High velocities; point recharge, minimal attenuation	Pollutants can reach receptor quickly	GW and SW (via gw)
	Sand/gravel aquifers (Rg and Lg)	High transmissivities	Mobility of NO ₃ , (but not P.)	GW and SW (via gw)
Karstification	Point recharge	Presence of swallow holes	No retardation of contaminants	GW & SW (via gw)
Climate	Rainfall	Recharge	Quantitative status	GW
	Evapo-transpiration		Baseflow in rivers	SW
T 1	01		Dilution	CW
Topography	Slope	Gradient	Kate of runoff	SW

Table 2Examples (draft) of relevant characteristics of the pathway and their implication

4.2.2 Example 1 Pathway susceptibility of a Surface Water Body to Phosphorus

Analysing the **general pathway susceptibility for phosphorus of a surface water body** requires that both the over ground and underground pathways need to be considered. Using the RBD GIS, Table 3, Table 4 and Table 5 illustrate a possible approach. The details on this approach would need input from

³ It is intended that all the components must be present in the RBD GIS.

⁴ Includes ecosystems dependent on either surface water or groundwater

relevant experts. Table 3 deals with the over ground pathway; Table 4 with the underground; and Table 5 combines the two.

Table 3	Relationship between physical setting and pathway susceptibility of surface water
	bodies for P. mobility by surface routes.

Physical setting	Susceptibility (over ground pathway)
'wet' soil	Е
'Low flow' aquifers with <1 m soil/subsoil	Н
Remaining areas	M, L and VL

For the **underground pathway**, soils, groundwater flow system and depth to rock data are combined, as shown in the matrix.

Table 4 Relationship between physical setting and susceptibility for P. mobility by underground routes.

Physical (hydrogeological) setting	Susceptibility (underground pathway)	
	'Dry' soil	'Wet' soil
Karst, <1 m soil/subsoil, point recharge via swallow holes	Е	Н
Karst, 1-3 m soil/subsoil Fissured, <1 m soil/subsoil	Н	М
Remaining areas	M, L and VL	L and VL

Combining Table 3 and Table 4 gives the susceptibility of P loss by both over ground and underground routes.

 Table 5
 Relationship between physical setting and potential phosphorus loss.

Physical setting	Susceptibility for P mobility
All 'wet' soil areas (over ground) Karst areas with <1 m 'dry' soil/subsoil (underground), recharge via swallow holes	E
Karst overlain by1-3 m 'dry' soil/subsoil (underground) Fissured aquifers overlain by <1 m dry soil/subsoil (underground) Low flow aquifers with <1 m 'dry' soil/subsoil (over ground)	Н
Remaining areas	M, L and VL

Note: All these areas can be derived from the RBD GIS

4.2.3 Example 2 Groundwater Bodies and General Susceptibility

In the groundwater context, there is a danger of translating pathway 'susceptibility' to just 'vulnerability'. While, depending on the pressure and circumstance, vulnerability may be the main factor, this is not always the case. The type of aquifer, and therefore the groundwater flow regime, may be relevant. For example, in a karst aquifer, overlain by thin soil/subsoil, leaching of P and transfer to a surface water receptor can readily occur. In contrast, silt and clay in a sand/gravel aquifer would attenuate P and transfer via groundwater to a surface water receptor is unlikely.

The broad susceptibility of a groundwater body (i.e. the relevant properties of the pathway) can be shown by combining vulnerability with flow regime (see Table 6 below).

Vulnerability	Pathway Susceptibility					
		Flo	w regime			
	Karst	Fissured	Intergranular	Low flow ⁵ , fissured		
	(Rk aquifers)	(Rf and Lm aquifers)	(sand/gravel aquifers)	(Ll, Pl and Pu aquifers)		
Extreme (<1 m)*	E	Е	Е	Н		
Extreme (1-3 m)*	E	Е	H/M	M/H		
High	Н	H/M	M/H	М		
Moderate	М	М	L	L		
Low	L	L	L	L		

 Table 6 General pathway susceptibility of groundwater bodies for pressures.

* Depth to rock in bedrock aquifers or to water table in sand/gravel aquifers

4.2.4 Example 3: Susceptibility of Groundwater for Nitrate

Step 1: Use soils map to distinguish 'dry' soils from 'wet' and organic soils.

Step 2: For the 'dry' soils (i.e. free-draining) area and for parts of the country which have a groundwater protection scheme (GWPS), apply the following matrix (Table 7). For areas without a GWPS, an alternative matrix could be derived using, for instance, the subsoils map.

Groundwater	Pathway Susceptibility for Nitrate							
Vulnerability ⁶		Flow regime						
	Karst	Fissured	Intergranular	Low flow ⁷ , fissured				
	(Rk aquifers)	(Rf and Lm aquifers)	(sand/gravel aquifers)	(Ll, Pl and Pu aquifers)				
Extreme (<1 m	Е	Е	Е	Е				
soil/subsoil)*								
Extreme (1-3 m	Е	Е	Е	Н				
subsoil)*								
High	Н	Н	Н	М				
Moderate	М	М	М	L				
Low	L	L	L	L				

 Table 7 General pathway susceptibility of groundwater bodies for nitrate.

* Depth to rock in bedrock aquifers or to water table in sand/gravel aquifers.

⁵ low transmissivity aquifers

⁶ In low vulnerability areas, the travel time for recharge to reach the groundwater will be >10 years, pollution is unlikely and the proportion of available recharge percolating vertically will be low (<20%). In highly vulnerable areas, travel time is likely to be more than 100 days, chemical pollution can occur, but microbial pollution is unlikely and, in most circumstances, a high proportion of available recharge (>70)%) will reach groundwater. In extremely vulnerable areas, travel times will generally be less than 100 days although in the case of outcrop and shallow rock (<1 m) it will be hours to days, microbial and chemical pollution can occur, and in many circumstances, the proportion of available recharge reaching groundwater will be high (>70%).

⁷ low transmissivity aquifers

5. Relevant Characteristics of Receptor

The WFD is not only risk-based, but it is receptor oriented, with the degree of risk depending not just on the pressures and the physical characteristics of the pathway, but also on the 'sensitivity' of the receptors, such as ecosystems, and their particular requirements. 'Sensitivity' is a property of the receptor. Examples of attributes that control the sensitivity of a water body or ecosystem to pressure are given in Table 8.

Attribute	Implication
Size of water body (e.g. lake)	Capacity to dilute (large bodies could be less sensitive)
Residence time	Assimilative capacity and loss of substrate for habitat
	(flushing effect in rivers)
Hydrochemistry of receptor	
Minerotrophic	 Less sensitive to nutrients
Ombotrophic	 Sensitive to nutrients
 Calcareous Lakes 	 Higher buffering capacity to pH changes
Degree of oxygenation	Sensitive species
Type of receptor (Habitat Type)	
♦ Fens	
– General	 Sensitive to gw abstraction, but not to nutrients
 Specific habitats (e.g. Pollardstown) 	 Very sensitive to reduction in flows and
	groundwater table fluctuations.
 Raised bogs 	
– General	 Moderate sensitivity to gw abstraction
 Specific habitats (e.g. soaks on Clara Bog) 	 High sensitivity to gw abstraction and drainage
 Freshwater spawning grounds 	
	• Require minimum flows in particular river types for
	breeding, sensitive to siltation of spawning grounds.
 Estuarine/Marine fish species 	• Sensitive to freshwater nutrient loadings, dangerous
	substances.
Physical characteristics of receptor	
 Tidal range and regime 	 Degree of exposure, zonation of species, salinity
	variation.
 River Morphology 	 Oxygenation, pool and riffle sequence for
	spawning.
 Lake hypsography 	 Light penetration, stratification, mixing.

 Table 8 Examples of attributes influencing the sensitivity of receptors.

Required sensitivity characteristics, which will be derived from characteristics used for typology, will include:

- River flow rate
- Recharge volumes
- Marine current velocities
- Groundwater flow regime
- Status of water body
- Species present
- Protected status
- Dependant ecosystems
- Proxy for lake assimilative capacity (volume, retention time)
- Lake bed material
- Extent of spawning areas

6. Combining Pressures, Susceptibility and Sensitivity

Set out below are examples of how combining pressures, susceptibility and sensitivity could be undertaken, using layers in the RBD GIS and matrices.

6.1 Example 1 Impact of Groundwater abstractions.

Table 9	Relationshin between	the risk to a	groundwater ho	dv and	groundwater abstraction
I able 9	Relationship between	the lisk to a	groundwater bo	uy anu	groundwater abstraction.

Table like this for each GW Body	*to be trialled	
2015 GWABS Impact (as % of LTA Recharge)*	GW Body Balance	
>15%	At Risk	
5 to 15%	Potentially At Risk	
<5%	Not at Risk	

This table is taken directly from UK TAG Task 7(h) report 'Draft Guidance on the Assessment of Abstraction and Recharge Pressures on Groundwater'.

The three main inputs are:

- Pressures: Data on abstractions.
- Physical characteristics: Recharge (methodology still to be decided, but will probable be based on rainfall, subsoil type and depth and, perhaps, soil type.)
- Receptor: Groundwater body, rivers, lakes.

The matrix shows that if average annual abstraction is >15% of available recharge, the groundwater body and associated surface water bodies are 'at risk'. The figures are based on studies undertaken by EA hydrogeologists and their expert judgement. Guidance from these experts will be beneficial to us in Ireland. However, it can be argued that thresholds in Ireland could be higher because a) potential recharge is higher than, for instance, in the SE of England, and b) our recharge is more dependable (fewer/shorter droughts).

If the receptor was a very sensitive ecosystem, such as at Pollardstown Fen, where a habitat is highly dependent on groundwater flows to the fen and to the associated groundwater levels and gradients in the vicinity of the fen, the matrix could change to that shown in Table 10.

Table 10	Relationshin	between the	e risk to a	sensitive l	habitat and	oroundwater :	abstraction
	Relationship	Detween the	c lisk to a	SCHSILIVE	labitat allu	groundwater	abstraction.

Groundwater abstraction* as a % of recharge in catchment of ecosystem	Risk classification of ecosystem
>5% (based on a discussion with Paul Johnston)	'at risk'
<5%	'not at risk'

* At Pollardstown, it is a reduction in flow caused by road drainage that is the principal pressure.

6.2 Example 2 Broad approach for linking pressures with susceptibility

Table 11 illustrates how the susceptibility can be linked to pressures to provide the 'risk' categories. The magnitude of the pressure, in this case ranging from High to Low, may reflect intensity of production, stocking density or some other measure. These thresholds, e.g. between High and Moderate, will need to be developed by expert groups. The factors which are relevant to the 'susceptibility' will depend on the characteristics of the pressure (e.g. P has different mobility from NO₃). For some pressures, 'susceptibility' might be equivalent to groundwater 'vulnerability'.

Magnitude of Agricultural	*Pathway Susceptibility for Nitrate (from Table 7)						
Pressure	Ε	Н	Μ	L, VL			
High	'at risk'	'at risk'	'potentially at risk'	'not at risk'			
Moderate	'potentially at risk'	'potentially at risk'	'not at risk'	'not at risk'			
Low	'not at risk'	'not at risk'	'not at risk'	'not at risk'			

Table 11 Illustration of risk classification.

*Shading denotes that pressure may represent a significant risk to status.

In the case of groundwater this is the final risk matrix. The sensitivity of the receptor will not apply in this case because all groundwaters are deemed sensitive due to their potential use for abstraction. For surface waters, there will be a further table to integrate the sensitivity of the receptor. Examples 3 and 4 below present such a case for two pressures on lakes. Figure 4 emphasises the need to integrate all three elements (pressure magnitude, pathway susceptibility and receptor sensitivity) into the risk assessment. For rivers, lakes, transitional and coastal waters all three 'axes' will need to be addressed.

Figure 4 Diagrammatic representation of the integration all three elements of risk assessment

6.3 Example 3 Combining Pressures, Susceptibility and Sensitivity of Lakes to Total P.

In the following example, the pathway susceptibility of phosphorus to lakes is derived from Table 5. This results in three degrees of susceptibility: E, H and M/L/VL. Using these susceptibilities of P loss from soil to water we can combine pressures to give Table 12, which identifies the risk of pressures impacting on a receptor. In this case a range of Total P concentrations are used to categorise the magnitude of the pressure.

Pressure	Phosphorus Pathway Susceptibility (from Table 5)				
(Total P)	E	M/L/VL			
High (>20µg l ⁻¹)	Very High threat	High threat	High threat		
Moderate $(10 - 20 \mu g l^{-1})$	Very High threat	High threat	Moderate threat		
Low ($<10\mu g l^{-1}$)	High threat	Moderate threat	Low threat		

Table 12 Combining pressure and pathway susceptibility for lakes with respect to phosphorus

Following on from this, Table 13 endeavours to combine the identified risk of a pressure impacting on a receptor (i.e. pressure + susceptibility) with the sensitivity of the receptor, in this case lake trophic status. In this way all three elements of the risk assessment (pressure, pathway, receptor) are combined.

Table 13 Final risk assessment matrix combining pressure, pathway susceptibility and the sensitivity of the receptor (in this case lake trophic status).

Receptor Sensitivity	Relative threat from integration of Pressure Magnitude & Pathway Susceptibility (derived from Table 12)					
(lake trophic	VERY HIGH HIGH MODERATE LOW / V.					
status)				LOW		
Oligotrophic	'at risk'	'at risk'	'potentially at risk	'not at risk'		
Mesotrophic	'potentially at risk	'potentially at risk	'not at risk'	'not at risk'		
Eutrophic	'not at risk'	'not at risk'	'not at risk'	'not at risk'		

6.4 Example 4 Combining Pressures, Susceptibility and Sensitivity of Lakes to acid inputs.

In this example the risk posed by acid inputs to lakes through acid deposition is assessed. Assumptions include that acid deposition to lakes will be driven largely by the interception of rainfall by conifer plantations and subsequent runoff to river and lakes. The degree to which lakes are impacted by acidic waters will largely depend on their alkalinity, which reflects calcareous geology and subsoils in the catchment. This can be calculated as per Table 5 and for argument sake will result in three run-off risk categories; High, Moderate and Low (see Table 14).

Table 14	Pathway	Susceptibility	for acid	deposition.
----------	---------	----------------	----------	-------------

Physical Setting	Pathway Susceptibility for acid deposition
High runoff risk	High
Moderate runoff risk	Moderate
Low runoff risk	Low

As introduced in Chapter 3, the magnitude of the pressure is determined by the presence or absence of conifer plantation in the catchment. In this case, highest risk is taken to be catchments with greater than 10% conifer cover. Table 15 then combines these pressure thresholds with the pathway susceptibility risks.

Table 15	Combining pressure and	pathway susceptibi	ility for acid de	position in lakes
----------	-------------------------------	--------------------	-------------------	-------------------

Pressure (Percentage	Acid Deposition Pathway Susceptibility					
of conifer cover)	HIGH	MODERATE	LOW			
>10 %	V High Threat	High Threat	Moderate Threat			
<10	High Threat	Moderate Threat	Low Threat			
0%	Moderate Threat	Low Threat	Very Low Threat			

Following on from this, Table 16 endeavours to combine the identified risk of a pressure impacting on a receptor (i.e. pressure + susceptibility) with the sensitivity of the receptor, in this case lake alkalinity. In this way, all three elements of the risk assessment (pressure, pathway, receptor) are combined. Highest risk to a lake water body will occur where alkalinity is low, where there is the presence of conifer plantation

 Table 16 Final risk assessment matrix combining pressure, pathway susceptibility and the sensitivity of the receptor (in this case lake alkalinity).

Receptor Sensitivity (Alkalinity)	Relative threat from integration of Pressure Magnitude & Pathway Susceptibility (derived from Table 15)						
	VERY HIGH	HIGH	MODERATE	LOW			
Low Alkalinity	'at risk'	'at risk'	'potentially at	'not at risk'			
$(<10 \text{ mg } l^{-1} \text{ CaCO}_3)$			risk				
Moderate Alkalinity	'potentially at	'potentially at	'not at risk'	'not at risk'			
$(10-20 \text{ mg } l^{-1} \text{ CaCO}_3)$	risk	risk					
High Alkalinity	'not at risk'	'not at risk'	'not at risk'	'not at risk'			
$(>20 \text{ mg l}^{-1} \text{ CaCO}_3)$							

7. Monitoring Data and Information on Known Impacts

7.1 Introduction

Monitoring data exist to varying degrees of adequacy. In this report, monitoring and monitoring data are placed in a broad risk assessment context, which requires analysis and understanding of the relationships and linkages between pressures, environmental pathways and impacts. Where the data are adequate, they are a critical component of the Methodology. Firstly, they are the major factor in determining the risk category of the water body; secondly, they can provide threshold values to validate pressure and impact assessments.

7.2 Thresholds for ecological status boundaries in surface waters

For surface waters, thresholds based on monitoring data will be essential for setting ecological status boundaries. Whilst these are still evolving and will not be complete until after the Intercalibration exercise in 2006, preliminary boundary thresholds may be used for this purpose.

In Appendix B Jim Bowman presents a draft paper on suggested ecological criteria boundaries for High/Good status and for Good/Moderate status to be used for the Intercalibration testing exercise. These threshold values may be used in the risk methodology to identify water bodies are below Good status and therefore 'at risk' and validate the pressure analysis. They may also be used to identify water bodies that are High status and therefore perhaps a sensitive receptor.

For rivers the Intercalibration exercise will rely on the existing Q-system, where the High/Good boundary will be Q4-5 and the Good/Moderate boundary will be Q3-4 (pers comm., Mr Kevin Clabby, EPA).

Similar preliminary ecological status boundaries are required for river and transitional/coastal waters.

7.3 Thresholds for chemical status in groundwaters

Progress has been made through the publication by EPA of Interim Guideline Values (IGV) (Keegan, 2003) for the protection of groundwater.

In this document the Author proposes, "In the absence of published criteria for good groundwater chemical status and to provide a consistent framework for the characterisation of groundwaters in Ireland, the EPA is now proposing a list of interim guideline values (IGVs) for groundwater. The values are to be used to assist with the characterisation of groundwater bodies and to establish the need for additional investigations or further actions in the event of the guideline values being exceeded."

Where monitoring data is available, these IGVs will assist in identifying bodies of groundwater that are 'at risk' and help validate the pressures analysis.

This report sets out: "a methodology for assessing groundwater chemical status and assigning either 'good' or 'poor' groundwater status to a groundwater body. The application of this methodology will provide a consistent basis for assessing groundwater status throughout the country. This document should be viewed as an Interim Report based on the best available information at the time of publication and it may be subject to review following the adoption of the new Groundwater Directive." This approach is summarized below in Figure 5 (Figure 4.1 from original document).

Figure 5 Proposed methodology for assessing groundwater quality (from Keegan, 2003).

8. Main Stages in Pressures and Impacts Assessment

Step ⁸	Description
1	Delineate and undertake evaluation and description of water bodies
2	Develop a 'conceptual understanding/model' of the river basin as a 3-dimensional entity, where emphasis is placed on the interconnection and interdependencies between the various components of the water cycle.
3	Identify and delineate water bodies to be assessed (surface water, lakes, transitional, coastal and groundwater). These water bodies may subsequently be sub-divided on completion of the pressure and impact analysis.
4	Review existing monitoring data to determine whether there are appropriate indicators to determine whether the water body is 'at risk' or not. Draw conclusions on the value and relevance of the data, and highlight gaps.
5	Obtain and incorporate relevant GIS layers on the physical characteristics of the RBD (e.g. soil, aquifers, etc.)
6	Develop 'susceptibility' matrices for each water body type for the main types of pollutants
7	Map and evaluate known impacts, e.g. on hydromorphology.
8	Obtain relevant available information on pressures and activities that are likely to pose a risk to the status of a water body. Install info. in RBD GIS.
9	Group all pollutants into 'pollutant types'. Develop general threshold values for particular pressure magnitudes and 'pollutant types', in the form of matrices.
10	Evaluate and report on 'sensitivity' of receptors, particularly ecosystems.
11	Develop threshold values for chemical and ecological parameters that indicate the 'risk' categories.
12	Combine relevant pressures, susceptibility and sensitivity in the form of matrices for both water bodies and ecosystems.
13	Apply matrices to RBD GIS.
14	Use available monitoring data to refine the threshold values and the 'risk' conclusions. If necessary, re-evaluate and amend matrices developed under previous steps.
15	For each water body, conclude whether 'at risk', 'not at risk' or 'potentially at risk'.
16	Undertake 'further characterisation' on bodies 'at risk' and 'potentially at risk'.

 Table 17
 Summary of main stages in pressure and impact assessment.

⁸ Some of these steps will be undertaken simultaneously and can be in a different order.

9. Members of the Working Group on Groundwater

Organisation

Geological Survey of Ireland (GSI)

Representative(s)

Donal Daly (Convenor) Geoff Wright Vincent Fitzsimons Coran Kelly Taly Hunter Williams Monica Lee

Camp Dresser McKee (CDM) Henning Moe Compass Informatics Ltd. Paul Mills Department of the Environment, Heritage and Local Pat Duggan Jim Ryan (NPWS) Government (DEHLG) Aine O'Connor (NPWS) Environment and Heritage Service/ Geological Survey of Peter McConvey Northern Ireland (EHS/GSNI) Environmental Protection Agency (EPA) Margaret Keegan Micheal McCarthaigh Kirk McClure Morton (KMM) Grace Glasgow Kieran Fay O'Callaghan Moran (OCM) Sean Moran Gerry Baker O'Neill Groundwater Engineering (OGE) Shane O'Neill Shannon Pilot River Basin - EPA/TCD Research Fellow Garrett Kilroy Southeastern River Basin District (SERBD) Colin Byrne Karl Richards Teagasc Trinity College, Dublin (TCD) Paul Johnston Catherine Coxon

10. References

Keegan, M. (2003) *Towards setting guideline values for the protection of groundwater in Ireland*. Environmental Protection Agency, Johnstown Castle Estate, County Wexford.

Analysis of Pressures and Impacts (IMPRESS) (2002). *The key implementation requirements of the Water Framework Directive*. Policy Summary to the Guidance Document. Fifth Draft, October 2002, 151 pp.

UK Technical Advisory Group WP7a(01) (2004) Draft Guidance on general principles for risk assessment (PR2v6.19-01-04), 16 pp.

11. Appendix A – Risk Criteria Tables

Contents:

Table A1	Source-Pathway-Receptor criteria for high relevance pressures in bodies of groundwater.
Table A2	Source-Pathway-Receptor criteria for high relevance pressures in river water bodies.
Table A3	Source-Pathway-Receptor criteria for high relevance pressures in lake water bodies.
Table A4	Source-Pathway-Receptor criteria for high relevance pressures in transitional water bodies.
Table A5	Source-Pathway-Receptor criteria for high relevance pressures in coastal water bodies.

Table A1. Source-Pathway-Receptor criteria for high relevance pressures in bodies of groundwater.

PRESSURE	SECTOR	SECTOR ACTIVITY	Groundwater	Type of	Magnitude of	Susceptibility	Sensitivity
CATEGORY			*	pressure	Pressure		
DIFFUSE	urban drainage	Airports	4	Hazardous	Extent of area,	% Hardstand,	Aquifer flow regime,
SOURCE	(including runoff)			Chemicals	storage & use	soil & subsoil	drinking water use
					practices	characteristics,	
						karstification, travel time	
	agriculture diffuse	Arable, improved grassland mixed farming	3-4	Nutrients	% Land cover,	soil & subsoil	Aquifer flow regime,
					stocking rates,	characteristics,	ecosystem support
					soil P status	karstification, travel time	
		crops with intensive nutrient or <u>pesticide</u> usage or	4	Nutrients	% Land cover,	soil & subsoil	Aquifer flow regime,
		long bare soil periods (e.g. corn, potato, sugar			stocking rates,	characteristics,	ecosystem support
		beets, vine, hops, fruits, vegetables)			soil P status	karstification, travel time	
				Hazardous	% Land cover	soil & subsoil	Aquifer flow regime,
				Chemicals		characteristics,	drinking water use
						karstification, travel time	
		application of agricultural waste to land	3-4	Nutrients,	Stocking rates,	soil & subsoil	Aquifer flow regime,
				pathogens	storage deficits	characteristics,	ecosystem support
					& soil P status	karstification, travel time	
	forestry	pesticide & herbicide applications	3-4	Hazardous	FIPS/Coillte %	soil & subsoil	Aquifer flow regime,
				Chemicals	cover, timing	characteristics,	drinking water use
					data	karstification, travel time	
	other diffuse	sewage sludge recycling to land	2-4	Metals	Spread lands,	soil & subsoil	Aquifer flow regime,
					volume &	characteristics,	drinking water use
					composition	karstification, travel time	
				Nutrients,	Spread lands,	soil & subsoil	Aquifer flow regime,
				Pathogens	volume &	characteristics,	ecosystem support
					composition	karstification, travel time	
POINT	waste water	private waste water primarily domestic (septic	3-4	Nutrients,	% unsewered	soil & subsoil	Aquifer flow regime,
SOURCE		tanks)		pathogens	network	characteristics,	ecosystem support,
						karstification, travel time	drinking water use
	industry (includes	gas/petrol	4-5	Hydrocarbon	Location of	age/type of storage tanks,	Aquifer flow regime,
	effluent & storage)			s, hazardous	service stations	soil & subsoil	drinking water use
				chemicals	& storage	characteristics,	
					facilities	karstification, travel time	
		Chemicals, incl. Pharmaceutical industries	4-5	Hazardous	Storage &	soil & subsoil	Aquiter flow regime,
		(organic and inorganic)		chemicals	waste disposal	characteristics,	drinking water use
				** 1	practices	karstification, travel time	
		pulp, paper & boards	4	Hazardous	Storage &	soil & subsoil	Aquifer flow regime,
				chemicals	waste disposal	characteristics,	drinking water use
1					practices	karstification, travel time	

Table A1. Source-Pathway-Receptor criteria for high relevance pressures in bodies of groundwater.

PRESSURE	SECTOR	SECTOR ACTIVITY	Groundwater	Type of	Magnitude of	Susceptibility	Sensitivity
CATEGORY			*	pressure	Pressure		-
		food processing (incl. Agric industries)	4	Nutrients	Storage &	soil & subsoil	Aquifer flow regime,
					waste disposal	characteristics,	drinking water use
					practices	karstification, travel time	
				Hazardous	Storage &	soil & subsoil	Aquifer flow regime,
				chemicals	waste disposal	characteristics,	drinking water use
					practices	karstification, travel time	
		electronics and other chlorinated solvent users	4	Hazardous	Storage &	soil & subsoil	Aquifer flow regime,
				chemicals	waste disposal	characteristics,	drinking water use
					practices	karstification, travel time	
		wood yards/timber treatment	4	Hazardous	Storage &	soil & subsoil	Aquifer flow regime,
				chemicals	waste disposal	characteristics,	drinking water use
					practices	karstification, travel time	
	Mining	active deep mine	5	Dewatering,	Zone of	soil & subsoil	Aquifer flow regime,
				Hazardous	influence	characteristics,	ecosystem support,
				chemicals		karstification, travel time	drinking water use
		active open cast coal site/quarry	3-4	Hazardous	Excavation	soil & subsoil	Aquifer flow regime,
				chemicals,	extent	characteristics,	ecosystem support,
				Siltation		karstification, travel time	drinking water use
		gas and oil exploration and production	3-4	Hazardous	Storage &	soil & subsoil	Aquifer flow regime,
				chemicals	waste disposal	characteristics,	ecosystem support,
					practices	karstification, travel time	drinking water use
		abandoned coal (and other) mines, spoil heaps	5	Acidic	Age, extent,	soil & subsoil	Aquifer flow regime,
		(bings),tailings dams		waters,	waste disposal	characteristics,	ecosystem support,
				Hazardous	practices	karstification, travel time	drinking water use
				chemicals			
	contaminated land	old landfill sites	5	Hazardous	Age, extent,	soil & subsoil	Aquifer flow regime,
				chemicals,	construction,	characteristics,	drinking water use
				pathogens	composition	karstification, travel time	
		urban industrial site (organic and inorganic)	5	Hazardous	Age, extent,	soil & subsoil	Aquifer flow regime,
				chemicals	composition,	characteristics,	drinking water use
					waste disposal	karstification, travel time	
					practices		
		rural sites (includes illegal dumps)	5	Hazardous	Age,	soil & subsoil	Aquifer flow regime,
				chemicals,	construction,	characteristics,	drinking water use
				pathogens	composition	karstification, travel time	
	agriculture point	Slurry	5	Nutrients,	Storage	soil & subsoil	Aquifer flow regime,
				Pathogens	facilities and	characteristics,	ecosystem support,
					capacity	karstification, travel time	drinking water use

Table A1. Source-Pathway-Receptor criteria for high relevance pressures in bodies of groundwater.

PRESSURE	SECTOR	SECTOR ACTIVITY	Groundwater	Type of	Magnitude of	Susceptibility	Sensitivity
CATEGORY			*	pressure	Pressure		
		silage and other feeds	4	Nutrients,	Storage	soil & subsoil	Aquifer flow regime,
				Pathogens	facilities and	characteristics,	ecosystem support,
					capacity	karstification, travel time	drinking water use
		sheep dip use	4	Hazardous	Waste disposal	soil & subsoil	Aquifer flow regime,
				chemicals	practices	characteristics,	drinking water use
						karstification, travel time	
		manure depots	4	Nutrients,	Storage	soil & subsoil	Aquifer flow regime,
				Pathogens	facilities and	characteristics,	ecosystem support,
					capacity	karstification, travel time	drinking water use
		farm chemicals	4	Hazardous	Storage &	soil & subsoil	Aquifer flow regime,
				chemicals	waste disposal	characteristics,	drinking water use
					practices	karstification, travel time	
	waste management	operating landfill site	4	Hazardous	Construction,	soil & subsoil	Aquifer flow regime,
				chemicals,	operating	characteristics,	drinking water use
				pathogens	practices	karstification, travel time	
		operating waste transfer stations, scrap yards etc.	4	Hazardous	Storage &	soil & subsoil	Aquifer flow regime,
				chemicals,	waste disposal	characteristics,	drinking water use
				pathogens	practices	karstification, travel time	
ABSTRACTION	reduction in flow	abstractions for agriculture, potable supply,	4-5	Lowering of	Abstraction as	Direct	Aquifer flow regime,
		industry, fish farms, hydro-energy, quarries/open		water table	% of recharge		ecosystem support,
		cast coal sites, navigation (e.g. supplying canals)					drinking water use
ARTIFICIAL	groundwater	groundwater recharge	?				
RECHARGE	management						
OTHER		introduced diseases	?				
ANTHRO-							
POGENIC							

Pressure	Sector	Sectoral activity	River	Type of	Magnitude of	Pathway	Receptor
Category		-		pressure	Pressure	Susceptibility	Sensitivity
DIFFUSE	urban drainage	industrial/commercial estates	4	Nutrients	Extent of area	Runoff risk	Flow - dilution
SOURCE	(including runoff)			Siltation	Extent of area	Runoff risk	Flow - dilution
				Toxic	Extent of area	Travel time	Dilution?
		urban areas (including sewer networks)	5	Nutrients	Extent of area	Runoff risk	Flow - dilution
				Siltation	Extent of area	Runoff risk	Flow - dilution
				Toxic	Extent of area	Travel time	Dilution?
		airports	4	Nutrients	Extent of area	Runoff risk	Flow - dilution
				Siltation	Extent of area	Runoff risk	Flow - dilution
				Toxic	Extent of area	Travel time	Dilution?
	agriculture diffuse	arable, improved grassland, mixed farming	2-4	Nutrients	Land use - %	Runoff risk or	Flow, Status,
					area arable etc	GW vulnerability	Species present
					Stocking rates	composite maps	
					Soil P status		
		crops with intensive nutrient or pesticide usage or	4	Nutrients	Land use - %	Runoff risk or	Flow, Status,
		long bare soil periods (e.g. corn, potato, sugar beets,		?arable covered	area arable etc	GW vulnerability	Species present
		vine, hops, fruits, vegetables)		above?		composite maps	
				Toxic	Chemical	Travel time	Dilution?
				~	composition	~	
		over grazing – leading to erosion	4	Siltation (leading	Stocking rate	Catchment slope	Flow, Status,
				to secondary	Soil type	Stream flow	Species present
				nutrient release)	x 1 0/		D 1 0
		horticulture, including greenhouses	4	I oxic	Land use - %	I ravel time	Dilution?
					area horticulture		
					Chemical		
		amplication of actional master to land	5	Nutrionto	Composition Stoplying rates	Dum off might on	Elaw Status
		application of agricultural waste to land	5	Nutrients	Stocking fates	GW uniperchility	Flow, Status,
					Soll P status	ow vullerability	species present
	forestry	coniferous plantations	4	nЦ	extent of	Buffering	Buffering
	loresuly	connerous plantations		pm	coniferous	capacity - Soil	capacity - Soil
					nlantation	type? Geology?	type? Geology?
					Soil type	Presence of	Presence of
					son type	limestone	limestone
		planting/ground preparation	5	Siltation	extent of	Catchment slope	Flow Status
		r		5	plantation	Stream flow	Species present
					Soil type	2000000000000	-receip present
					Ground slope		
					Technique used?		

Pressure	Sector	Sectoral activity	River	Type of	Magnitude of	Pathway	Receptor
Category		falling		Nutrionta	avtent of follod	Bunoffrick	Elow Status
		lening	4	Nutrents	extent of felleu	KUHOII IISK	Species present
				Toxic	arca extent of felled	Travel time	Dilution?
				TOXIC	area	11avei tille	Dilution
		fertilizer applications	1-4	Nutrients	extent of	Runoff risk	Flow Status
				rturionts	fertilized area	realion non	Species present
		drainage	4	Siltation	extent of area	Catchment slope	Flow, Status,
					drained	Stream flow	Species present
					Soil type		1 1
					Ground slope		
					Technique used?		
	other diffuse	sewage sludge recycling to land	2-4	Nutrients	Spreadlands,	Runoff risk	Flow, Status,
					Volume of		Species present
					material		
				Toxic	Spreadlands,	Travel time	Dilution?
					Volume/material		
			1 4	N	composition	D 00 1	
		atmospheric deposition	1 - 4	Nutrients	Rainfall intensity	Runoff risk	Flow, Status,
DOINT	woodo wooton	municipal maste mater mimorily domestic	5	Oreania	DE & laval of	Direct	Species present
FOINT	waste water	municipal waste water primarily domestic	3	Organic	re & level of	Direct	Flow, Status,
SOURCE				Nutrients	PE & level of	Direct	Flow Status
				Nutrents	treatment	Direct	Species present
				Toxic	Chemical	Travel time	Dilution?
					composition		
				Microbiological	PE & level of	Direct	Flow, Status,
				Ŭ	treatment		Species present
		municipal waste water with a major industrial	5	Organic	PE & level of	Direct	Flow, Status,
		component			treatment		Species present
				Nutrients	PE & level of	Direct	Flow, Status,
					treatment		Species present
				Toxic	Chemical	Travel time	Dilution?
					composition		
				Microbiological	PE & level of	Direct	Flow, Status,
				XX / 1	treatment	D	Species present
		water supply plants	5	Water supply	Volume of	Direct	Flow, Status,
		stano suto a la companya a completa	5	substances	supply	Divert	Species present
		storm water and emergency overflows	5	Organic	Volume	Direct	Flow, Status,
							species present

Pressure	Sector	Sectoral activity	River	Type of	Magnitude of	Pathway	Receptor
Category				pressure	Pressure	Susceptibility	Sensitivity
				Nutrients	Volume	Direct	Flow, Status,
					~		Species present
				Toxic	Chemical	Travel time	Dilution?
					composition		
				Microbiological	Volume	Direct	Flow, Status,
						_	Species present
		private waste water primarily domestic (septic tanks)	4	Organic	PE	Proximity to	Flow, Status,
						watercourses?	Species present
						GW vulnerability	
						composite maps	
				Nutrients	PE	Proximity to	Flow, Status,
						watercourses?	Species present
						GW vulnerability	
						composite maps	
				Toxic	Chemical	Travel time	Dilution?
					composition		
				Microbiological	PE	Proximity to	Flow, Status,
						watercourses?	Species present
						GW vulnerability	
						composite maps	
		private waste water with a major industrial	5	Organic	PE & level of	Direct	Flow, Status,
		component (IPC?)			treatment		Species present
				Nutrients	PE & level of	Direct	Flow, Status,
					treatment		Species present
				Toxic	Chemical	Dilution?	Dilution?
					composition	Travel time	
				Microbiological	PE & level of	Direct	Flow, Status,
					treatment		Species present
	industry	pulp, paper & boards	4	Toxic	Chemical	Travel time	Dilution?
					composition		
		woollens/textiles	5	Toxic	Chemical	Travel time	Dilution?
					composition		
		food processing	4	Toxic	Chemical	Travel time	Dilution?
					composition		
		brewing/distilling	4	Toxic	Chemical	Travel time	Dilution?
					composition		
		wood yards/timber treatment	4	Toxic	Chemical	Travel time	Dilution?
					composition		

Pressure	Sector	Sectoral activity	River	Type of	Magnitude of	Pathway Susceptibility	Receptor Sensitivity
Category		leather tanning	4	Toxic	Chemical	Travel time	Dilution?
	mining	active open cast coal site/quarry	4	Toxic	Chemical composition	Travel time	Dilution?
				Siltation	Extent of site Material type Ground slope Technique used?	Catchment slope Stream flow	Flow, Status, Species present
		gas and oil exploration and production	4	Toxic	Chemical composition	Travel time	Dilution?
		peat extraction	4	Siltation	Extent of site Silt trap presence Technique used?	Catchment slope Stream flow	Flow, Status, Species present
				Nutrients	Extent of site Technique used?	Runoff risk or GW vulnerability composite maps	Flow, Status, Species present
	contaminated land	old landfill sites	5	Toxic	Chemical composition	Travel time	Dilution?
		urban industrial site (organic and inorganic)	4	Organic?	Chemical composition	Travel time	Dilution?
				Toxic	Chemical composition	Travel time	Dilution?
		rural sites (includes illegal dumps)	5	Toxic	Chemical composition	Travel time	Dilution?
	agriculture point	slurry farm yards???	5	Nutrients	Livestock density Storage deficits?	Runoff risk or GW vulnerability composite maps	Flow, Status, Species present
		silage and other feeds	5	Organic? (oxygen depletion)	Practices?	Runoff risk or GW vulnerability composite maps	Flow, Status, Species present
		sheep dip use and disposal	5	Toxic	Chemical composition	Travel time	Dilution?
		manure depots	4	Nutrients	Storage capacity	Runoff risk or GW vulnerability composite maps	Flow, Status, Species present
		farm chemicals	4	Toxic	Chemical composition	Travel time	Dilution?
	waste management	operating landfill site	4	Toxic	Chemical composition	Travel time	Dilution?

Pressure Category	Sector	Sectoral activity	River	Type of pressure	Magnitude of Pressure	Pathway Susceptibility	Receptor Sensitivity
		application of non agricultural waste to land	5	Toxic?	Chemical composition	Travel time	Dilution?
	aquaculture	inland fish farming / watercress / aquaculture	5	Organic	Size of enterprise	Direct	Flow, Status, Species present
				Nutrients	Size of enterprise	Direct	Flow, Status, Species present
				Toxic	Chemical composition	Direct	Dilution?
ABSTRACTION	reduction in flow	abstractions for agriculture, potable supply, industry, fish farms, hydro-energy, quarries/open cast coal sites, navigation (e.g. supplying canals)	5	Physical damage	Volume as % of recharge	Direct	Flow, Status, Species present
MORPHO- LOGICAL	river management	physical alteration of channel	4	Physical damage	Extent of works Technique?	Direct	Flow, Status, Species present
		engineering activities	4	Physical damage	Extent of works Technique?	Direct	Flow, Status, Species present
		land infrastructure (road/bridge construction)	4	Siltation	Extent of works Technique?	Direct	Flow, Status, Species present
		dredging	5	Siltation	Extent of works Technique?	Direct	Flow, Status, Species present
OTHER ANTHRO-		litter/fly tipping	4	Physical damage	Extent of activity	Direct	Dependant ecosystems
POGENIC		exploitation/removal of other animals/plants	4	Physical damage	Species	Direct	Dependant ecosystems
		recreation	4	Siltation	Extent of area Soil type	Stream flow rates Catchment slope	Flow, Status, Species present
		land use change – farmland reclamation, urbanisation, afforestation	4?	General?	% of catchment area	Runoff risk or GW vulnerability composite maps	Flow, Status, Species present

Pressure	Sector	Sectoral activity	Lake	Type of	Magnitude of	Pathway	Receptor
Category	. 1, 1, 00		4	pressure	Pressure	Susceptibility	Sensitivity
DIFFUSE	agriculture diffuse	arable, improved grassiand, mixed farming	4	Nutrients	Land use - %	GW uniperchility	Nutrient
SOURCE					Stocking rotes	Gw vullerability	assimilative
		arong with intensive nutrient or pasticide usage or		Nutrionto	Lond use 9/	Dupoff risk or	Nutriont
		long have sail periods (a g corn poteto, sugar bests	4	Parable covered	Lanu use - 70	GW yulperability	nutrient
		vine hons fruits vegetables)		ahove?		composite maps	capacity??
		vine, nops, nuns, vegetables)		Toxic	Chemical	Dilution?	Dilution?
				TOALC	composition	Travel time	Dilution
		over grazing – leading to erosion	4	Siltation (leading	Stocking rate	Catchment slope	Lake bed
				to secondary	Soil type	Stream flow	material –
				nutrient release)	JI JI		spawning area
				,			extent
		horticulture, including greenhouses	4	Toxic	Land use - %	Dilution?	Dilution?
					area horticulture	Travel time	
					Chemical		
					composition		
		application of agricultural waste to land	5	Nutrients	Stocking rates	Runoff risk or	Nutrient
					Storage deficits?	GW vulnerability	assimilative
					Soil P status	composite maps	capacity??
	forestry	coniferous plantations	4	pH	extent of	Buffering	Buffering
					coniferous	capacity - Soil	capacity - Soil
					plantation	type? Geology?	type? Geology?
					Soil type	Presence of	Presence of
		alonting/ground anonomation	4	Ciltation	autant of	Catabra at alara	Intestone
		planung/ground preparation	4	Siltation	extent of	Stream flow	Lake bed
					Soil type	Sueam now	material -
					Ground slope		extent
					Technique used?		extent
		fertilizer applications	1-4	Nutrients	extent of	Runoff risk	Nutrient
				1 (001101105	fertilized area	Trunott fibit	assimilative
							capacity??
	other diffuse	atmospheric deposition	1-4	Nutrients	Rainfall intensity	Runoff risk	Nutrient
		1 1			5		assimilative
							capacity??
POINT	waste water	municipal waste water primarily domestic	5	Organic	PE & level of	Direct or stream	Lake volume?
SOURCE					treatment	inflow	

Pressure Category	Sector	Sectoral activity	Lake	Type of pressure	Magnitude of Pressure	Pathway Susceptibility	Receptor Sensitivity
				Nutrients	PE & level of treatment	Direct or stream inflow	Nutrient assimilative capacity??
				Toxic	Chemical composition	Dilution? Travel time	Dilution?
				Microbiological	PE & level of treatment	Direct or stream inflow	Lake volume?
		municipal waste water with a major industrial component	5	Organic	PE & level of treatment	Direct or stream inflow	Lake volume?
				Nutrients	PE & level of treatment	Direct or stream inflow	Nutrient assimilative capacity??
				Toxic	Chemical composition	Dilution? Travel time	Dilution?
				Microbiological	PE & level of treatment	Direct or stream inflow	Lake volume?
		storm water and emergency overflows	5	Organic	Volume	Direct or stream inflow	Lake volume?
				Nutrients	Volume	Direct or stream inflow	Nutrient assimilative capacity??
				Toxic	Chemical composition	Dilution? Travel time	Dilution?
				Microbiological	Volume	Direct or stream inflow	Lake volume?
		private waste water primarily domestic (septic tanks)	4	Organic	PE	Proximity to watercourses? GW vulnerability composite maps	Lake volume?
				Nutrients	PE	Proximity to watercourses? GW vulnerability composite maps	Nutrient assimilative capacity??
				Toxic	Chemical composition	Dilution? Travel time	Dilution?
				Microbiological	PE	Proximity to watercourses? GW vulnerability composite maps	Lake volume?

Pressure	Sector	Sectoral activity	Lake	Type of	Magnitude of	Pathway	Receptor
Category				pressure	Pressure	Susceptibility	Sensitivity
	industry	electronics and other chlorinated solvent users	3 – 4	Toxic	Chemical	Dilution?	Dilution?
					composition	Travel time	
		wood yards/timber treatment	3 – 4	Toxic	Chemical	Dilution?	Dilution?
					composition	Travel time	
	contaminated land	old landfill sites	5	Toxic	Chemical	Dilution?	Dilution?
					composition	Travel time	
		rural sites (includes illegal dumps)	5	Toxic	Chemical	Dilution?	Dilution?
					composition	Travel time	
	agriculture point	Slurry	5	Nutrients	Livestock	Runoff risk or	Nutrient
					density	GW vulnerability	assimilative
		Farm yards???			Storage deficits?	composite maps	capacity??
		silage and other feeds	5	Organic?	Practices?	Runoff risk or	Assimilative
				(oxygen		GW vulnerability	capacity??
				depletion)		composite maps	
		sheep dip use and disposal	5	Toxic	Chemical	Dilution?	Dilution?
					composition	Travel time	
		farm chemicals	5	Toxic	Chemical	Dilution?	Dilution?
					composition	Travel time	
	aquaculture	inland fish farming / watercress / aquaculture	3 – 4	Organic	Size of enterprise	Dilution?	Dilution?
				Nutrients	Size of enterprise	Dilution?	Dilution?
				Toxic	Chemical	Dilution?	Dilution?
					composition		
ABSTRACTION	reduction in flow	abstractions for agriculture, potable supply, industry,	5	Physical damage	Volume as % of	Direct or % of	Volume of lake –
		fish farms, hydro-energy, quarries/open cast coal			recharge	stream inflow	dependant
		sites, navigation (e.g. supplying canals)					ecosystems
OTHER		recreation	3 – 4	Physical damage	Extent of activity	Direct	Dependant
ANTHRO-							ecosystems
POGENIC		introduced species	4	Physical damage	Species	Direct	Dependant
							ecosystems
		land drainage	5	Siltation	Extent of area	Stream flow rates	Lake bed
					Soil type	Catchment slope	material –
							spawning area
							extent

Pressure	Sector	Sectoral activity	Transitional	Type of	Magnitude of	Pathway	Receptor
Category			Waters	pressure	Pressure	Susceptibility	Sensitivity
DIFFUSE SOURCE	agriculture diffuse	arable, improved grassland, mixed farming	4	Nutrients	Land use - % area arable etc Stocking rates	Surface runoff, river inputs, GW seepage, tidal regime	Nutrient assimilative capacity??
		crops with intensive nutrient or pesticide usage or long bare soil periods (e.g. corn, potato, sugar beets, vine, hops, fruits, vegetables)	4	Nutrients ?arable covered above?	Land use - % area arable etc	As above	Nutrient assimilative capacity??
				1 OXIC	composition	As above	Dilution?
		over grazing – leading to erosion	4	Siltation (leading to secondary nutrient release)	Stocking rate Soil type	As above	
		horticulture, including greenhouses	4	Toxic	Land use - % area horticulture Chemical composition	As above	Dilution?
		application of agricultural waste to land	5	Nutrients	Stocking rates Storage deficits? Soil P status	As above	Nutrient assimilative capacity??
	other diffuse	Dredge spoil disposal into surface waters	4				
		Shipping/navigation	4				
POINT SOURCE	waste water	municipal waste water primarily domestic	5	Organic	PE & level of treatment	As above or direct inputs	Water body size?
				Nutrients	PE & level of treatment	As above	Nutrient assimilative capacity??
				Toxic	Chemical composition	As above	Dilution?
				Microbiological	PE & level of treatment	As above	Water body size?
		municipal waste water with a major industrial component	5	Organic	PE & level of treatment	As above	Water body size?
				Nutrients	PE & level of treatment	As above	Nutrient assimilative capacity??
				Toxic	Chemical composition	As above	Dilution?
				Microbiological	PE & level of treatment	As above	Water body size?

Pressure	Sector	Sectoral activity	Transitional	Type of	Magnitude of	Pathway	Receptor
Category			Waters	pressure	Pressure	Susceptibility	Sensitivity
		storm water and emergency overflows	5	Organic	Volume	As above	Water body size?
				Nutrients	Volume	As above	Nutrient
							assimilative
							capacity??
				Toxic	Chemical	As above	Dilution?
					composition		
				Microbiological	Volume	As above	Water body size?
		private waste water primarily domestic (septic tanks)	4	Organic	PE	As above	Water body size?
				Nutrients	PE	As above	Nutrient
							assimilative
							capacity??
				Toxic	Chemical	As above	Dilution?
					composition		
				Microbiological	PE	As above	Water body size?
	industry	Food processing (incl. Agri-industries)	3-4		~		
		electronics and other chlorinated solvent users	4 – 5	Toxic	Chemical	As above	Dilution?
					composition		
		wood yards/timber treatment	4	Toxic	Chemical	As above	Dilution?
					composition		
		Shipyards	4-5				Dil vi o
	Mining	Abandoned coal (and other) mines, spoil heaps	1 - 4	Toxic	Chemical	As above	Dilution?
		(bings), tailings dams	_	an i	composition	D'I d' O	
	contaminated land	old landfill sites	5	I oxic	Chemical	Dilution?	Dilution?
MODBUO	T '4' 1 1		4	DI 1	composition	I ravel time	D 1 (
MORPHO-	I ransitional and	Estuarine and coastal dredging	4	Physical	Areal extent		Dependant
LUGICAL	coastal management			disturbance &			Dilution?
		Maning constructions, shinyands and hash over	4	Division1			Dilution?
		L and realemation and realders	4	Physical			
		Eally regranded and policies	4	Physical			
OTHED		introduced discesses	4				
ANTHDO		introduced diseases	4				
POCENIC		introduced diseases	4	Dhyaiaal damass	Secolog	Direct	Donondont
IUGENIC		introduced species	4	Physical damage	Species	Direct	Dependant
							ecosystems

Pressure	Sector	Sectoral activity	Coastal Waters	Type of	Magnitude of	Pathway	Receptor
Category				pressure	Pressure	Susceptibility	Sensitivity
DIFFUSE SOURCE	agriculture diffuse	over grazing – leading to erosion	4	Siltation (leading to secondary nutrient release)	Stocking rate Soil type	Surface runoff, currents, tidal regime, adjacent water bodies	Dependent ecosystems
		application of agricultural waste to land	5	Nutrients	Stocking rates Storage deficits? Soil P status	As above	assimilative capacity??
	forestry	coniferous plantations	4	рН	extent of coniferous plantation Soil type	As above	
		planting/ground preparation	4	Siltation	extent of plantation Soil type Ground slope Technique used?	As above	
		fertilizer applications	1-4	Nutrients	extent of fertilized area	As above	assimilative capacity??
	other diffuse	Dredge spoil disposal into surface waters	4-5				
		Shipping/navigation	4				
POINT SOURCE	waste water	municipal waste water primarily domestic	4	Organic	PE & level of treatment	As above or direct input	Water body size?
				Nutrients	PE & level of treatment	As above	assimilative capacity??
				Toxic	Chemical composition	As above	Dilution?
				Microbiological	PE & level of treatment	As above	Water body size?
		municipal waste water with a major industrial component	4	Organic	PE & level of treatment	As above	Water body size?
				Nutrients	PE & level of treatment	As above	assimilative capacity??
				Toxic	Chemical composition	As above	Dilution?
				Microbiological	PE & level of treatment	As above	Water body size?
		storm water and emergency overflows	5	Organic	Volume	As above	Water body size?
				Nutrients	Volume	As above	assimilative capacity?

Pressure	Sector	Sectoral activity	Coastal Waters	Type of	Magnitude of	Pathway	Receptor
Category				pressure	Pressure	Susceptibility	Sensitivity
				Toxic	Chemical	As above	Dilution?
					composition		
				Microbiological	Volume	As above	Water body size?
		private waste water primarily domestic (septic tanks)	4 – 5	Organic	PE	As above	Water body size?
				Nutrients	PE	As above	assimilative capacity??
				Toxic	Chemical composition	As above	Dilution?
				Microbiological	PE	As above	Water body size?
	industry	electronics and other chlorinated solvent users	4	Toxic	Chemical composition	As above	Dilution?
		wood yards/timber treatment	4	Toxic	Chemical composition	As above	Dilution?
	agriculture point	Slurry Farm vards???	4	Nutrients	Livestock density Storage deficits?	As above	assimilative capacity??
		silage and other feeds	4	Organic? (oxygen depletion)	Practices?	As above	Assimilative capacity??
		sheep dip use and disposal	4	Toxic	Chemical composition	As above	Dilution?
		farm chemicals	4	Toxic	Chemical composition	As above	Dilution?
	aquaculture	inland fish farming / watercress / aquaculture /	4	Organic	Size of enterprise	As above	Dilution?
		shellfish / marine cage farming		Nutrients	Size of enterprise	As above	Dilution?
				Toxic	Chemical composition	As above	Dilution?
MORPHO- LOGICAL	Transitional and coastal management	Fishing activities	4 – 5	Physical			
OTHER		Commercial fishing	4 – 5				
ANTHRO- POGENIC		introduced species	4	Physical damage	Species	Direct	Dependant ecosystems
		introduced species	4				
		Exploitation/removal of other plants/animals	3-4	Physical damage	Extent of activity	Direct	Dependant ecosystems
		Climate change	4				

12. Appendix B – Draft Ecological Status Boundaries for lakes Criteria for lake site selection for the Draft Register of Intercalibration sites for Republic of Ireland.

It is estimated that there are in excess of 11,000 lakes in the Republic of Ireland. Direct chemical measurements have been performed, in the last decade, on approximately 600 lakes, while details on the phytoplankton, macrophytes and macroinvertebrates are available for about 250 of these.

The frequency of chemical sampling is variable. During the last review of water quality for the period 1998- 2000, the majority of lakes had been sampled once a year, 49 lakes had been examined three times or more during the Summer period and 30 were sampled at a frequency that allowed calculation of annual values.

Water Framework Directive Intercalibration Exercise

The Intercalibration exercise is to be confined to the two most important pressures on lakes: Nutrient loading and acid deposition and their impacts.

Pressure: Nutrient Loading for which the quality elements <u>Phytoplankton</u> and <u>Macrophytes</u> will be examined.

Pressure: Acid deposition for which the quality elements <u>Macroinvertebrates</u> and <u>Fish</u> (if available) will be examined.

Ireland will participate in Intercalibrating 5 types:

Region	Туре	Altitude	Depth	Geology	Size
Northern	L-N1	Lowland	Shallow	Moderate Alkalinity	Large
		<200m asl	3 - 15m	10 - 50 mg CaCO3/l	0.5 - 5.0 km2
	L-N2	Lowland	Shallow	Low alkalinity	Large
		<200m asl	3 - 15m	<10 mg CaCO3	0.5 - 40 km2
Atlantic	L -A1	Lowland	Shallow	Calcareous	Small
		<200m asl	3 - 15m	>50 mg CaCO3	<0.5 km2
	L-A2	Lowland	Shallow	Calcareous	
		<200m asl	3 - 15m	>50 mg CaCO3	>0.5 km2
	L -A3	Lowland	Shallow	Peat	Small
		<200m asl	3 - 15m		<0.5 km2

Table B.1Intercalibration types for Ireland.

For each of these five types we are requested to supply information on <u>two</u> sites at the high/good and good/moderate boundaries respectively giving a total of 20 sites.

As the above boundaries have not been formally set the instruction is for each Member State to set their own boundaries based on their interpretation of the normative definitions of the relevant 3 statii in Annex V of the Directive.

The following are suggested ecological criteria for setting such boundaries:

Quality	Indicators	High/Good Boundary	Good/ Moderate Boundary
Element			
Phytoplankton	Species composition	Pennate diatoms prominent in summer in diverse but small populations	Melosira spp, Stephanodiscus spp. & Cyanobacteria prominent in summer in diverse populations
	Cell Volume (annual mean)	1 mm ³ /l	2 mm ³ /l
	Chlorophyll Abundance (annual values)	Max [2.5] [8.0]	$\frac{\text{Max}}{[8.0]} \qquad [25.0]$
Macrophytes	Species composition	<i>Chara</i> sp. prominent. Increasing amounts of <i>Lemna trisulca</i> Very little <i>Elodea</i> <i>canadensis</i>	Decreased amounts of: <i>Chara</i> sp. and increasing amounts of <i>Fontinalis</i> <i>antipyretica, Nuphar lutea,</i> <i>Potamogeton pectinatus, Potamogeton</i> <i>lucens</i> <i>Elodea</i> spp prominent filamentous algae (mostly <i>Cladophora</i>) may also be prominent
	Depth of Macrophyte Charophytes) Colonisation	6.0 m	4.0 m
Physico- Chemical	Total Phosphorus	10 mg P/m ³	20* mg P/m ³ *Phosphorus Regulations in operation in RoI require that this value should be 20 mg P/m³ , while the OECD Classification scheme suggests 35 mg P/m ³

Table B.2Lowland, Shallow Calcareous Lakes (small and large) (L-A1 and L-A2)

Table B.3	Lowland, Shallow Siliceous (Moderate Alkalinity) La	akes > 0.5 km2 (L-N1)
-----------	---	-----------------------

Quality Element	Indicators	High/Good Boundary	Good/ Moderate Boundary
Macrophytes	Species Composition	<i>Isoetes lacustris</i> <i>Littorella Uniflora</i> and <i>Nitella</i> sp.	increasing amounts of <i>Elodea</i> canadensis, Potamogeton perfoliatus, Potamogeton berchtoldii and absence of Isoetes sp, Littorella and Nitella sp.
Macroinvertebrate	Species Composition	Reduced numbers of acid sensitive organisms: <i>Baetis</i> spp. <i>Gammarus</i> spp, <i>Lymnaea peregra</i>	Absence of most sensitive forms

Quality Element		Indicators	High/Good Boun	dary	Good/ Moderate Boundary	
Macrophytes		Species	increasing amour	nts of	presence of Nuphar lutea	
		Composition	Fontinalis			
			antipyretica,			
			Potamogeton nate	ins		
These lakes are ty	pica	ally characterise	d by the common o	occurre	ence of Isoetes lacustris, Littorella	
uniflora, Juncus b	oulb	osus, Myriophyl	llum alterniflorum a	and Nii	<i>tella</i> sp.	
No lakes in Irelan	d ar	e impacted by a	inthropogenic acidi	fication	n sufficiently to observe a trend in	
macrophytes with	pН	. However, a na	atural trend is clear	ly evid	lent in that Juncus bulbosus is almost	
exclusively confir	ned	to lakes with an	alkalinity < 10 mg	l ⁻¹ Ca	<u>CO3.</u>	
Macroinvertebrate		Species	Reduced numbers of		Absence of the most sensitive forms.	
		Composition	acid sensitive		Some of the following present:	
			organisms: Baetis spp.,		Centroptilum spp., Ecdyonurus spp,	
			Caenis sp., Lymnaea		Heptagenia spp, Cloeon spp.,	
			peregra, Gammarus		Isoperla spp., Capnia spp,	
			spp		Siphlonurus spp., Tinodes spp,	
					Sericostoma sp., Hydropsyche spp.,	
					plus	
Due to the sensitiv	vity	of certain speci	es of littoral macro	inverte	ebrates to acid conditions these	
organisms are inc	reas	ingly used to m	easure of the impac	t of ac	bidification on surface waters. A	
classification sche	eme	or "acidificatio	n score index" - the	Radd	um Index - has been adapted to express	
the results. In this	me	thod species are	e assigned an "acidi	ficatio	n score" or index in accordance with	
the following sche	eme	of sensitivity of	r tolerance to acidit	y:		
	c.	TT / 1 / 1	C	тс	1 1100	
Category Min. pH t		pH tolerated	Score	Inferr	red acidification	
by species		ecies		impac	ct by presence	
5560		1.0	Nono			
A 5.5-0.0 B 5.0-5.5		0.5	Mode	Moderate		
C 4	2.0-5.5 4 7		0.25	Serio	Serious	
	. / []		0.25	Sever		
D	т./		0	50,001	c	
To comply with the WED boundaries could be set based on the 90, 75, 50 and 25 percentile of the						
unimpacted or ref	erer	ice score to indi	cate deviation		ine 96, 76, 56 und 25 percentile of the	
Fish		Species	0 [°] Salmo trutta present		0 Salmo trutta sparse or absent	
Col		Composition	(00		5.50	
Physico-Chemical P		РН	6.00		5.50	
		ANC	<40?		<20	
		ANC	<40?		<20	

Table B.4Lowland, Shallow Siliceous (Low Alkalinity) Lakes > 0.5 km² (L-N2 and L-A3)